
MATH 241 Worksheet 5 Fall 2022

Sections 12.2 & 12.3 - Iterated Integrals and Double Integrals over General Regions

1. Evaluate the integral of f(x, y) = x+ y over the region bounded by y =
√
x and y = x2.

2. Evaluate the integral of f(x, y) = x+ y over the region bounded by y = x and y = x2.

3.

∫ ∫
R

6x2 − 10y dA , where R is the triangle with vertices (0, 3), (1, 1), and (5, 3).

4. Write down the double integral

∫ ∫
R

y2exy dA as an iterated integral, where R is given by 0 ≤ y ≤ 3 and

y ≤ x ≤ 5.

5. Use a double integral to calculate the area of the region bounded by the curves y = x2 − 4 and y = 2x+ 4.

6. Find the volume of the tetrahedron bounded by the planes x+ 2y + z = 2, x = 2y, x = 0, and z = 0.
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Then (5) gives
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If we had expressed D as a type I region using Figure 12(a), then we would have 
obtained
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but this would have involved more work than the other method. Q

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes 
x 1 2y 1 z − 2, x − 2y, x − 0, and z − 0.

SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the three-
dimensional solid and another of the plane region D over which it lies. Figure 13 shows 
the tetrahedron T  bounded by the coordinate planes x − 0, z − 0, the vertical plane 
x − 2y, and the plane x 1 2y 1 z − 2. Since the plane x 1 2y 1 z − 2 intersects the  
xy-plane (whose equation is z − 0) in the line x 1 2y − 2, we see that T  lies above 
the triangular region D in the xy-plane bounded by the lines x − 2y, x 1 2y − 2, and 
x − 0. (See Figure 14.)

The plane x 1 2y 1 z − 2 can be written as z − 2 2 x 2 2y, so the required 
volume lies under the graph of the function z − 2 2 x 2 2y and above

D − hsx, yd | 0 < x < 1, xy2 < y < 1 2 xy2j
Therefore
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FIGURE 14

FIGURE 13
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Section 12.4 - Doubles Integrals in Polar Coordinates

Evaluate the following integrals.

7.

∫ ∫
R

2xy dA , R is the portion of the region between the circles of radius 2 and radius 5 centered at the origin

that lies in the first quadrant.

8.

∫ ∫
D

ex
2+y2

dA , D is the unit disk centered at the origin.

9.

∫ 1

0

∫ √1−y2

0

cos(x2 + y2) dx dy

10.

∫ 2

0

∫ √2y−y2

0

1 dx dy

11.

∫ √2

0

∫ √4−x2

x

3x dy dx



Section 12.5 - Applications of Doubles Integrals (Density and Mass)

12. Find the mass of a thin metal plate which occupies the region R inside the square with vertices (1, 1), (2, 1), (1, 2),
and (2, 2), if the density of the region r is given by δ(x, y) = x2 + y2 kg/m2. Here, x and y are in meters.

13. Find the mass of a thin metal plate which occupies the region R in the first quadrant inside the circle of radius
2, and outside the circle of radius 1, both centered at the origin. The density of the region R is given by
δ(x, y) = x2 + y2 kg/m2. Here, x and y are in meters.


