Sections 12.2 \& 12.3-Iterated Integrals and Double Integrals over General Regions

1. Evaluate the integral of $f(x, y)=x+y$ over the region bounded by $y=\sqrt{x}$ and $y=x^{2}$.
2. Evaluate the integral of $f(x, y)=x+y$ over the region bounded by $y=x$ and $y=x^{2}$.
3. $\iint_{R} 6 x^{2}-10 y d A$, where R is the triangle with vertices $(0,3),(1,1)$, and $(5,3)$.
4. Write down the double integral $\iint_{R} y^{2} e^{x y} d A$ as an iterated integral, where R is given by $0 \leq y \leq 3$ and $y \leq x \leq 5$.
5. Use a double integral to calculate the area of the region bounded by the curves $y=x^{2}-4$ and $y=2 x+4$.
6. Find the volume of the tetrahedron bounded by the planes $x+2 y+z=2, x=2 y, x=0$, and $z=0$.

Section 12.4 - Doubles Integrals in Polar Coordinates

Evaluate the following integrals.
7. $\iint_{R} 2 x y d A, R$ is the portion of the region between the circles of radius 2 and radius 5 centered at the origin that lies in the first quadrant.
8. $\iint_{D} e^{x^{2}+y^{2}} d A, D$ is the unit disk centered at the origin.
9. $\int_{0}^{1} \int_{0}^{\sqrt{1-y^{2}}} \cos \left(x^{2}+y^{2}\right) d x d y$
10. $\int_{0}^{2} \int_{0}^{\sqrt{2 y-y^{2}}} 1 d x d y$
11. $\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^{2}}} 3 x d y d x$

Section 12.5-Applications of Doubles Integrals (Density and Mass)

12. Find the mass of a thin metal plate which occupies the region R inside the square with vertices $(1,1),(2,1),(1,2)$, and $(2,2)$, if the density of the region r is given by $\delta(x, y)=x^{2}+y^{2} \mathrm{~kg} / \mathrm{m}^{2}$. Here, x and y are in meters.
13. Find the mass of a thin metal plate which occupies the region R in the first quadrant inside the circle of radius 2 , and outside the circle of radius 1 , both centered at the origin. The density of the region R is given by $\delta(x, y)=x^{2}+y^{2} \mathrm{~kg} / \mathrm{m}^{2}$. Here, x and y are in meters.
