
MATH 241 Multivariable Calculus Worksheet 4 Fall 2022

(1) State the type of the quadric surface and describe the trace obtained by intersection with the given plane.

4x2 +
(y

3

)2
− 2z2 = −1, z = 1

(2) State the type of the quadric surface and describe the trace obtained by intersection with the given plane.

y = 3x2, z = 27

(3) Find the equation of the hyperboloid shown in the following figure.
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22. Describe the surface that is obtained when, in the equation
±8x2 ± 3y2 ± z2 = 1, we choose (a) all plus signs, (b) one minus
sign, and (c) two minus signs.

23. What is the equation of the surface obtained when the elliptic

paraboloid z =
(x

2

)2
+

(y

4

)2
is rotated about the x-axis by 90◦? Refer

to Figure 13.
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24. Describe the intersection of the horizontal plane z = h and the
hyperboloid −x2 − 4y2 + 4z2 = 1. For which values of h is the inter-
section empty?

In Exercises 25–30, sketch the given surface.

25. x2 + y2 − z2 = 1
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30. z = −x2

31. Find the equation of the ellipsoid passing through the points marked
in Figure 14(A).
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32. Find the equation of the elliptic cylinder passing through the points
marked in Figure 14(B).

33. Find the equation of the hyperboloid shown in Figure 15(A).
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34. Find the equation of the quadric surface shown in Figure 15(B).

35. Determine the vertical traces of elliptic and parabolic cylinders in
standard form.

36. What is the equation of a hyperboloid of one or two sheets in stan-
dard form if every horizontal trace is a circle?

37. Let C be an ellipse in a horizonal plane lying above the xy-plane.
Which type of quadric surface is made up of all lines passing through
the origin and a point on C?

38. The eccentricity of a conic section is defined in Section 11.5. Show
that the horizontal traces of the ellipsoid

(x

a

)2
+

(y

b

)2
+

( z

c

)2
= 1

are ellipses of the same eccentricity (apart from the traces at height
h = ±c, which reduce to a single point). Find the eccentricity.

Further Insights and Challenges
39. Let S be the hyperboloid x2 + y2 = z2 + 1 and let P = (α, β, 0)

be a point on S in the (x, y)-plane. Show that there are precisely two
lines through P entirely contained in S (Figure 16). Hint: Consider the
line r(t) = 〈α + at, β + bt, t〉 through P . Show that r(t) is contained

in S if (a, b) is one of the two points on the unit circle obtained by ro-
tating (α, β) through ±π

2 . This proves that a hyperboloid of one sheet
is a doubly ruled surface, which means that it can be swept out by
moving a line in space in two different ways.

(4) Parameterize the intersection of the surfaces

y2 − z2 = x− 2, y2 + z2 = 9

(5) Parameterize the intersection of the surfaces

x2 + y2 = 1 and z = 4x2
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In Exercises 13–16, the function r(t) traces a circle. Determine the
radius, center, and plane containing the circle.
13. r(t) = (9 cos t)i + (9 sin t)j

14. r(t) = 7i + (12 cos t)j + (12 sin t)k

15. r(t) = 〈sin t, 0, 4 + cos t〉

16. r(t) = 〈6 + 3 sin t, 9, 4 + 3 cos t〉

17. Let C be the curve r(t) = 〈t cos t, t sin t, t〉.
(a) Show that C lies on the cone x2 + y2 = z2.
(b) Sketch the cone and make a rough sketch of C on the cone.

18. Use a computer algebra system to plot the projections onto
the xy- and xz-planes of the curve r(t) = 〈t cos t, t sin t, t〉 in Exer-
cise 17.

In Exercises 19 and 20, let

r(t) = 〈sin t, cos t, sin t cos 2t〉

as shown in Figure 12.
19. Find the points where r(t) intersects the xy-plane.

20. Show that the projection of r(t) onto the xz-plane is the curve

z = x − 2x3 for − 1 ≤ x ≤ 1

y

x

z

y

z

x

z

FIGURE 12

21. Parametrize the intersection of the surfaces

y2 − z2 = x − 2, y2 + z2 = 9

using t = y as the parameter (two vector functions are needed as in
Example 3).

22. Find a parametrization of the curve in Exercise 21 using trigono-
metric functions.

23. Viviani’s Curve C is the intersection of the surfaces (Figure 13)

x2 + y2 = z2, y = z2

(a) Parametrize each of the two parts of C corresponding to x ≥ 0 and
x ≤ 0, taking t = z as parameter.

(b) Describe the projection of C onto the xy-plane.

(c) Show that C lies on the sphere of radius 1 with center (0, 1, 0). This
curve looks like a figure eight lying on a sphere [Figure 13(B)].
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FIGURE 13 Viviani’s curve is the intersection of the surfaces
x2 + y2 = z2 and y = z2.

24. Show that any point on x2 + y2 = z2 can be written in the form
(z cos θ, z sin θ, z) for some θ . Use this to find a parametrization of
Viviani’s curve (Exercise 23) with θ as parameter.

25. Use sine and cosine to parametrize the intersection of the cylinders
x2 + y2 = 1 and x2 + z2 = 1 (use two vector-valued functions). Then
describe the projections of this curve onto the three coordinate planes.

26. Use hyperbolic functions to parametrize the intersection of the sur-
faces x2 − y2 = 4 and z = xy.

27. Use sine and cosine to parametrize the intersection of the surfaces
x2 + y2 = 1 and z = 4x2 (Figure 14).

y

x

z

FIGURE 14 Intersection of the surfaces x2 + y2 = 1 and z = 4x2.1



(6) Find a parameterization of the curve.
(a) The line passing through (1, 0, 4) and (4, 1, 2).
(b) The horizontal circle of radius 1 with center (2,−1, 4).
(c) The intersection of the surfaces

z = x2 − y2 and z = x2 + xy − 1

(7) Evaluate the limit.

lim
t→0

〈 1

t+ 1
,
et − 1

t
, 4t
〉

(8) Find a parametrization of the tangent line at the point indicated.

r(s) = (ln s)i + s−1j + 9sk, s = 1

(9) Compute the length of the curve over the given interval.

r(t) = 〈t cos t, t sin t, 3t〉, 0 ≤ t ≤ 2π

(10) Set up a definite integral to find the length of the curve of intersection of the cylinder 4x2 + y2 = 4 and the plane
x+ y + z = 2.

(11) Find an arc length parameterization of r(t) = 〈et sin t, et cos t, et〉

(12) Calculate the velocity and acceleration vectors and the speed at the time indicated.

r(t) = 〈t3, 1− t, 4t2〉, t = 1

(13) Find r(t) and v(t) given a(t) and the initial velocity and position.

a(t) = 〈et, 2t, t+ 1〉, v(0) = 〈1, 0, 1〉, r(0) = 〈2, 1, 1〉

Let r(s) be an arc length parameterization and T the unit tangent vector. The curvature at r(s) is the quantity

κ(s) =
∣∣∣dT
ds

∣∣∣
In practice, it is often impossible to find an arc length parametrization explicitly. Because of this reason, it is good
to have a formula to compute curvature using any regular parametrization r(t).

If r(t) is a regular parameterization, then the curvature at r(t) is

κ(t) =
|r′(t)× r′′(t)|
|r′(t)|3

(14) Compute the curvature κ(t) of the twisted cubic

r(t) = 〈t, t2, t3〉


