(1) State the type of the quadric surface and describe the trace obtained by intersection with the given plane.

$$
4 x^{2}+\left(\frac{y}{3}\right)^{2}-2 z^{2}=-1, \quad z=1
$$

(2) State the type of the quadric surface and describe the trace obtained by intersection with the given plane.

$$
y=3 x^{2}, \quad z=27
$$

(3) Find the equation of the hyperboloid shown in the following figure.

(4) Parameterize the intersection of the surfaces

$$
y^{2}-z^{2}=x-2, \quad y^{2}+z^{2}=9
$$

(5) Parameterize the intersection of the surfaces

$$
x^{2}+y^{2}=1 \quad \text { and } \quad z=4 x^{2}
$$

(6) Find a parameterization of the curve.
(a) The line passing through $(1,0,4)$ and $(4,1,2)$.
(b) The horizontal circle of radius 1 with center $(2,-1,4)$.
(c) The intersection of the surfaces

$$
z=x^{2}-y^{2} \quad \text { and } \quad z=x^{2}+x y-1
$$

(7) Evaluate the limit.

$$
\lim _{t \rightarrow 0}\left\langle\frac{1}{t+1}, \frac{e^{t}-1}{t}, 4 t\right\rangle
$$

(8) Find a parametrization of the tangent line at the point indicated.

$$
\mathbf{r}(s)=(\ln s) \mathbf{i}+s^{-1} \mathbf{j}+9 s \mathbf{k}, \quad s=1
$$

(9) Compute the length of the curve over the given interval.

$$
\mathbf{r}(t)=\langle t \cos t, t \sin t, 3 t\rangle, \quad 0 \leq t \leq 2 \pi
$$

(10) Set up a definite integral to find the length of the curve of intersection of the cylinder $4 x^{2}+y^{2}=4$ and the plane $x+y+z=2$.
(11) Find an arc length parameterization of $\mathbf{r}(t)=\left\langle e^{t} \sin t, e^{t} \cos t, e^{t}\right\rangle$
(12) Calculate the velocity and acceleration vectors and the speed at the time indicated.

$$
\mathbf{r}(t)=\left\langle t^{3}, 1-t, 4 t^{2}\right\rangle, \quad t=1
$$

(13) Find $\mathbf{r}(t)$ and $\mathbf{v}(t)$ given $\mathbf{a}(t)$ and the initial velocity and position.

$$
\mathbf{a}(t)=\left\langle e^{t}, 2 t, t+1\right\rangle, \quad \mathbf{v}(0)=\langle 1,0,1\rangle, \quad \mathbf{r}(0)=\langle 2,1,1\rangle
$$

Let $\mathbf{r}(s)$ be an arc length parameterization and \mathbf{T} the unit tangent vector. The curvature at $\mathbf{r}(s)$ is the quantity

$$
\kappa(s)=\left|\frac{d \mathbf{T}}{d s}\right|
$$

In practice, it is often impossible to find an arc length parametrization explicitly. Because of this reason, it is good to have a formula to compute curvature using any regular parametrization $\mathbf{r}(t)$.

If $\mathbf{r}(t)$ is a regular parameterization, then the curvature at $\mathbf{r}(t)$ is

$$
\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}
$$

(14) Compute the curvature $\kappa(t)$ of the twisted cubic

$$
\mathbf{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle
$$

