(1) What is the minimum force you must apply to pull a $20-\mathrm{kg}$ wagon up a frictionless ramp inclined at an angle $\theta=15^{\circ}$.

(2) Consider the two vectors $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=\langle 3,-2,1\rangle$. Are \mathbf{v} and \mathbf{w} perpendicular? Justify your answer.
(3) Consider the two vectors $\mathbf{v}=\langle 1,2,3\rangle$ and $\mathbf{w}=\langle 5,0,1\rangle$. Are \mathbf{v} and \mathbf{w} parallel? Justify your answer. If they are not, produce a unit vector normal to both \mathbf{v} and \mathbf{w}.
(4) Calculate the area of the parallelogram spanned by \mathbf{v} and \mathbf{w}.
$\mathbf{v}=\langle 1,0,1\rangle$ and $\mathbf{w}=\langle 0,-2,3\rangle$.
(5) Find the vector and scalar projections of $\mathbf{v}=\langle 1,2,3\rangle$ onto $\mathbf{w}=\langle 1,-1,0\rangle$.
(6) The diagonals of a parallelogram are given by the vectors $\mathbf{a}=\langle 3,-4,-1\rangle$ and $\mathbf{b}=\langle 2,3,-6\rangle$. Show that the parallelogram is a rhombus.
(7) For what values of a are $\mathbf{v}=\langle a,-2,1\rangle$ and $\mathbf{w}=\langle 2 a, a,-4\rangle$ perpendicular?
(8) Compute the volume of the parallelepiped spanned by the vectors $\mathbf{a}=\langle 2,-3,0\rangle, \mathbf{b}=\langle 1,1,-1\rangle$ and $\mathbf{c}=\langle 3,0,-1\rangle$.
(9) Show that the distance from a point $P_{1}\left(x_{1}, y_{1}\right)$ to the line $a x+b y+c=0$ is

$$
\frac{\left|a x_{1}+b y_{1}+c\right|}{\sqrt{a^{2}+b^{2}}}
$$

Use this formula to find the distance from the point $(-2,3)$ to the line $3 x-4 y+5=0$.

