Section 13.2-Line Integrals

1. Consider the force field $\mathbf{F}(x, y, z)=(x z, 0,-y z)$ in Newtons, where x, y, and z are in meters. Let C be the oriented line segment from $(-1,2,0)$ to $(3,0,1)$. Calculate the work done by \mathbf{F} along C.
2. Consider the force field $\mathbf{F}(x, y)=(x y,-x+y)$ in Newtons, where x and y are in meters. Let C_{1} be the oriented curve from $(0,0)$ to $(1,1)$ along $y=x$. Let C_{2} be the oriented curve from $(0,0)$ to $(1,1)$ along $y=x^{2}$. Calculate the work done by \mathbf{F} along C_{1} and C_{2}.
3. Let $\mathbf{F}=\left(x^{2}+y^{2}, x y\right)$. Let C be the oriented upper semi circle of radius 3 from $(3,0)$ to the point $(-3,0)$. Find the work done by \mathbf{F} along C.

Section 13.3 - Conservative Vector Fields

4. Consider the vector field $\mathbf{F}=\left(2 x^{3} y^{4}+x, 2 x^{4} y^{3}+y\right)$.
a) Show that \mathbf{F} is conservative.
b) Calculate the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} r$, where C is the oriented piece of the parabola given by $y=x^{2}$ from $(0,0)$ to $(1,1)$.
5. Consider the vector field $\mathbf{F}=\left(2 y+8 x y^{3}, 2 x+12 x^{2} y^{2}\right)$. Find the work done by \mathbf{F} along $C=C_{1}+C_{2}+C_{3}$ where C_{1} : oriented line segment from $(2,0)$ to $(2,3)$,
C_{2} : oriented line segment from $(2,3)$ to $(0,3)$,
C_{3} : oriented quarter of the circle of radius 3 , centered at the origin, from $(0,3)$ to $(-3,0)$.
6. Consider the vector field $\mathbf{F}=(4 x-z, 3 y+z, y-x)$.
a) Show that \mathbf{F} is conservative.
b) Calculate the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} r$, where C is an oriented curve from $(1,2,3)$ to $(2,0,1)$.
7. Let $f(x, y, z)=x^{2}+y^{3}+z^{4}$ and $\mathbf{F}=\vec{\nabla} f$. Find the line integral of \mathbf{F} along the oriented curve, consisting of four line segments, which go from $(1,0,0)$ to $(1,2,5)$, then from $(1,2,5)$ to $(2,-3,7)$, then from $(2,-3,7)$ to $(-4,6,-7)$, and then from $(-4,6,-7)$ to $(0,0,1)$.

Section 13.4-Green's Theorem

8. Let $\mathbf{F}=\left(x,-x^{2} y^{2}\right)$ be a force field in Newtons. Calculate the work done by \mathbf{F} on an object that starts at $(0,0)$, travels along a line to $(1,1)$, then travels along a line to $(0,1)$, and finally travels along a line back to $(0,0)$.
9. Let $\mathbf{F}=\left(x^{5}-y^{3}, x^{3}-y^{5}\right)$, and C be the curve which starts at $(0,0)$, moves along a line segment to $(1 / \sqrt{2}, 1 / \sqrt{2})$, moves counterclockwise along the circle of radius 1 , centered at the origin, to the point $(0,1)$, and then moves long a line segment, back to $(0,0)$. Calculate the work done by F along C.
10. Let $\mathbf{F}=\left(x^{5}-y^{3}, x^{3}-y^{5}\right)$, and C_{1} be the curve which starts at $(0,0)$, moves along a line segment to $(1 / \sqrt{2}, 1 / \sqrt{2})$, moves counterclockwise along the circle of radius 1 , centered at the origin, to the point $(0,1)$. Find the line integral along C_{1}.
11. Calculate $\int_{C} \mathbf{F} \cdot \mathrm{~d} r$, where $\mathbf{F}=\left(y^{2}+e^{x}, 2 x y+5 x+e^{y}\right)$ and C is the circle of radius 5 centered at $(1,1)$ and oriented clockwise.
