Section 13.2 - Line Integrals

- 1. Consider the force field $\mathbf{F}(x, y, z) = (xz, 0, -yz)$ in Newtons, where x, y, and z are in meters. Let C be the oriented line segment from (-1, 2, 0) to (3, 0, 1). Calculate the work done by **F** along C.
- 2. Consider the force field $\mathbf{F}(x, y) = (xy, -x + y)$ in Newtons, where x and y are in meters. Let C_1 be the oriented curve from (0,0) to (1,1) along y = x. Let C_2 be the oriented curve from (0,0) to (1,1) along $y = x^2$. Calculate the work done by \mathbf{F} along C_1 and C_2 .
- 3. Let $\mathbf{F} = (x^2 + y^2, xy)$. Let C be the oriented upper semi circle of radius 3 from (3,0) to the point (-3,0). Find the work done by \mathbf{F} along C.

Section 13.3 - Conservative Vector Fields

- 4. Consider the vector field $\mathbf{F} = (2x^3y^4 + x, 2x^4y^3 + y).$
 - a) Show that **F** is conservative.

b) Calculate the line integral $\int_C \mathbf{F} \cdot dr$, where C is the oriented piece of the parabola given by $y = x^2$ from (0,0) to (1,1).

5. Consider the vector field $\mathbf{F} = (2y + 8xy^3, 2x + 12x^2y^2)$. Find the work done by \mathbf{F} along $C = C_1 + C_2 + C_3$ where

 C_1 : oriented line segment from (2,0) to (2,3),

 C_2 : oriented line segment from (2,3) to (0,3),

 C_3 : oriented quarter of the circle of radius 3, centered at the origin, from (0,3) to (-3,0).

- 6. Consider the vector field $\mathbf{F} = (4x z, 3y + z, y x)$.
 - a) Show that **F** is conservative.
 - b) Calculate the line integral $\int_C \mathbf{F} \cdot dr$, where C is an oriented curve from (1,2,3) to (2,0,1).
- 7. Let $f(x, y, z) = x^2 + y^3 + z^4$ and $\mathbf{F} = \overrightarrow{\nabla} f$. Find the line integral of \mathbf{F} along the oriented curve, consisting of four line segments, which go from (1,0,0) to (1,2,5), then from (1,2,5) to (2,-3,7), then from (2,-3,7) to (-4,6,-7), and then from (-4,6,-7) to (0,0,1).

Section 13.4 - Green's Theorem

- 8. Let $\mathbf{F} = (x, -x^2y^2)$ be a force field in Newtons. Calculate the work done by \mathbf{F} on an object that starts at (0,0), travels along a line to (1,1), then travels along a line to (0,1), and finally travels along a line back to (0,0).
- 9. Let $\mathbf{F} = (x^5 y^3, x^3 y^5)$, and C be the curve which starts at (0,0), moves along a line segment to $(1/\sqrt{2}, 1/\sqrt{2})$, moves counterclockwise along the circle of radius 1, centered at the origin, to the point (0,1), and then moves long a line segment, back to (0,0). Calculate the work done by F along C.
- 10. Let $\mathbf{F} = (x^5 y^3, x^3 y^5)$, and C_1 be the curve which starts at (0,0), moves along a line segment to $(1/\sqrt{2}, 1/\sqrt{2})$, moves counterclockwise along the circle of radius 1, centered at the origin, to the point (0,1). Find the line integral along C_1 .
- 11. Calculate $\int_C \mathbf{F} \cdot dr$, where $\mathbf{F} = (y^2 + e^x, 2xy + 5x + e^y)$ and C is the circle of radius 5 centered at (1, 1) and oriented clockwise.