Problem Sheet 8

Cylindrical Coordinates and Spherical Coordinates

- 1. Evaluate $\int \int \int_S 16z \, dV$, where S is the solid upper hemisphere of the sphere $x^2 + y^2 + z^2 = 4$.
- 2. Evaluate $\iint \int_E y \, dV$ where E is the region that lies below the plane z = x + 2 above the xy-plane and between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.
- 3. Let S be the solid region bounded by $z = \sqrt{3(x^2 + y^2)}$ and above by $x^2 + y^2 + z^2 = 4$. Find the volume of the solid region S.
- 4. Let S be the solid region inside the sphere given by $x^2 + y^2 + z^2 = 4$ and outside the right circular cylinder given by $x^2 + y^2 = 1$.
 - (a) Set up an integral in cylindrical coordinates to compute the volume of the solid region S.
 - (b) Set up an integral in spherical coordinates to compute the volume of the solid region S.
- 5. Find the volume of S, using whatever coordinates seem to be the most convenient. S is the solid region outside the cylinder where $x^2 + y^2 = 1$, inside the cylinder where $x^2 + y^2 = 4$, and inside the sphere of radius 3, centered at the origin.
- 6. Find the volume of the solid region between the spheres of radius 3 and radius 5, centered at the origin, and inside the cone where $z = \sqrt{x^2 + y^2}$.
- 7. Let S be the solid region in the 1st octant (i.e., where $x \ge 0$, $y \ge 0$, and $z \ge 0$) in \mathbb{R}^3 which is contained within the sphere where $x^2 + y^2 + z^2 = 16$, bounded by the cones where $z = \sqrt{x^2 + y^2}$ and $z\sqrt{3} = \sqrt{x^2 + y^2}$, and bounded by the planes with equations y = x and $y\sqrt{3} = x$. Find the volume of S.

8. Evaluate
$$\int_0^3 \int_0^{\sqrt{9-y^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{18-x^2-y^2}} z \, dz \, dx \, dy$$

Density and Mass

- 9. Let S be the solid region in the first quadrant inside the sphere of radius 2, and outside the sphere of radius 1, both centered at the origin. Find the mass of S if the density of the solid region S is given by $\delta(x, y, z) = \sqrt{x^2 + y^2 + z^2} \text{ kg/m}^3$.
- 10. Let S be the solid right circular cylinder where $-4 \le z \le 4$ and $0 \le x^2 + y^2 \le 4$. Find the mass of S if the density of the solid region S is given by $\delta(x, y, z) = \sqrt{x^2 + y^2} \text{ kg/m}^3$.
- 11. Let S be the solid region under the graph of $z = 9 x^2 y^2$ and above the plane where z = 5. Find the mass of S if the density of the solid region S is given by $\delta(x, y, z) = kz \text{ kg/m}^3$, where k > 0.
- 12. Let S be the solid circular half-cylinder where $-4 \le z \le 4$, $0 \le x^2 + y^2 \le 4$, and $y \ge 0$. Find the mass of S if the density of the solid region S is given by $\delta(x, y, z) = y \text{ kg/m}^3$.
- 13. Let S be the solid region above the rectangle, in the xy-plane, where $0 \le x \le 1$ and $0 \le y \le 5$, below the hyperbolic paraboloid given by $z = 2 + y^2 x^2$, and above the plane where z = 1. Find the mass of S if the density of the solid region S is given by $\delta(x, y, z) = z \text{ kg/m}^3$.
- 14. Assume that a region S in \mathbb{R}^3 is occupied by a solid object and that, at each point (x, y, z) in the object, you have the density $\delta(x, y, z)$. Show that the mass of the object is the volume of S times the average value of the density function on the region S.