Section 12.7 - Triple Integrals

1. (a) Evaluate $\iiint_{S} x d V$, where S is the solid region under the plane $2 x+3 y+z=6$ that lies in the first octant. (b) Find the volume of the solid region S in part (a)
2. Let S be the solid region which is bounded on the sides and top by the planes where $x=0$ and $x+z=1$ and on the bottom by the parabolic cylinder where $z=y^{2}-1$.
(a) Sketch the solid region S.
(b) Sketch the projection of the solid region S onto the $x y$-plane and set up an iterated integral to compute the volume of the solid region S.
(c) Sketch the projection of the solid region S onto the $y z$-plane and set up an iterated integral to compute the volume of the solid region S.
(d) Sketch the projection of the solid region S onto the $x z$-plane and set up an iterated integral to compute the volume of the solid region S.
3. Integrate $f(x, y, z)=x$ over the solid region W bounded above by $z=4-x^{2}-y^{2}$ and below by $z=x^{2}+3 y^{2}$ in the first octant $x \geq 0, y \geq 0, z \geq 0$.
4. Find the volume of the solid region S between the planes $z=x+y$ and $z=3 x+5 y$ lying over the rectangle $D=[0,3] \times[0,2]$.
5. Find the volume of the solid region S between the planes $z=x+y$ and $z=3 x+5 y$ lying over the triangle with vertices $(0,0),(1,0)$ and $(0,1)$.
6. (a) Consider the integral $\iiint_{S} x d V$ over the solid region S which is under the graph of $z=4-x^{2}-y^{2}$ and above the first quadrant in the $x y$-plane. Write down the integral with limits.
(b)Write down the integral to find the volume of the solid region S in part (a).
