In each of the following exercises, a solid region S is described. Calculate the volume of S using a double integral.

1. S is the solid tetrahedron in the first octant, bounded by the three coordinate planes and the plane where $x+2 y+z=3$.
2. S is the solid region bounded by $z=x^{2}+y^{2}$ and $z=4$.
3. S is the solid region, which is in the first octant, bounded by $y^{2}=4 x, 2 x+y=4, z=y$, and $y=0$.
4. S is the solid region, which is in the first octant, bounded by $x^{2}+y^{2}=a^{2}$ and $z=x+y$.
5. S is the solid region enclosed by $y=x^{2}, y=4, z=x^{2}$ and $z=0$.
6. S is the solid region which is under the surface $z=x y$ and above the triangle with vertices $(1,1,0),(4,1,0)$, and $(1,2,0)$.
7. S is the solid region bounded by $z=x^{2}+y^{2}$ and $z=y$.
8. S is the solid region bounded by $4 x^{2}+y^{2}=4 z$ and $z=2$.
9. S is the solid region bounded by $x+y+z=\frac{3}{2}$ and $z=\left(x-\frac{1}{2}\right)^{2}+\left(y-\frac{1}{2}\right)^{2}$.
10. S is the solid region, which is in the first octant, bounded by $y^{2}=4 x, 2 x+y=4, z=y$, and $y=0$.
11. S is the solid region, which is in the first octant, bounded by $x+y+z=9,2 x+3 y=18$, and $x+3 y=9$.
12. S is the solid region which is below the graph of $z=1-x^{2}-y^{2}$ and above the triangle with vertices $(0,0,0)$, $(1,0,0)$ and $(0,1,0)$.

Note: After we go over triple integrals, you can come back here and do these problems using triple integrals.

