Maximum and Minimum Values

1. Find the critical points of the following functions, and classify each one as a point where f has a local maximum value, a local minimum value, or a saddle point.

$$
\text { i) } f(x, y)=3 x y-x^{3}-y^{3}
$$

ii) $f(x, y)=x^{2}+50 y^{2}+x^{2} y$
2. Consider the function $f(x, y)=x^{2}+y^{2}(1-x)^{3}$. Show that f has a unique critical point and that, at that critical point, f attains a local minimum value. Show, however, that f does not attain a global minimum value at the critical point.

