The Chain Rule

1. Suppose that $T(u, v, w)=3 u^{2}+v^{2}-2 w^{2}$, and that $u=r \cos t, v=5 r-3 t, w=r^{2} e^{t}$.
(a) What is (u, v, w) when $(r, t)=(2,0)$?
(b) Calculate $\frac{\partial T}{\partial r}$ and $\frac{\partial T}{\partial t}$ at the point $(r, t)=(2,0)$.
2. The pressure P, in atmospheres (atm), produced by oxygen in a bottle, with a piston, is given by

$$
P=\frac{n R T}{V-0.03 n}-1.4\left(\frac{n}{V}\right)^{2}
$$

where n is the number of moles of gas, T is the temperature in Kelvins $(\mathrm{K}), V$ is the volume in liters, and R is the gas constant $0.082 \mathrm{~L}-\mathrm{atm} / \mathrm{mol}-\mathrm{K}$. (Note that the constants 0.03 and 1.4 in the formula are assumed to have the appropriate units.)
a) Find $\frac{\partial P}{\partial V}, \frac{\partial P}{\partial T}$.
b) Suppose that n is held a constant at $n=5$. Also, suppose, when $V=5$ liters and $T=300 K$, that V is increasing at a rate of 0.5 liters $/ \mathrm{s}$ and T is increasing at a rate of $10 \mathrm{~K} / \mathrm{s}$. Find the rate of change of P, with respect to time, at this moment.
3. Suppose that the temperature in ${ }^{\circ} \mathrm{C}$ of a heated metal plate is given by $T(x, y)$, where x and y are measured in meters. Suppose that we know that

$$
\nabla T(1,2)=(3,-5){ }^{\circ} \mathrm{C} / \mathrm{m}, \quad \nabla T(2,3)=(5,-3){ }^{\circ} \mathrm{C} / \mathrm{m}, \quad \text { and } \quad \nabla T(-3,4)=(-3,1)^{\circ} \mathrm{C} / \mathrm{m} .
$$

The position on the plate of an ant, at time t seconds, is given by $\mathbf{p}(t)=\left\langle 2 t-5,3 t^{2}+1\right\rangle$ meters. What is the rate of change of the temperature at the ant's location, in ${ }^{\circ} \mathrm{C}$ per second, at time $t=1$ second?
4. Suppose that $g(x, y)$ is a differentiable real-valued function such that

$$
\left.\frac{\partial g}{\partial x}\right|_{(5,1)}=2,\left.\quad \frac{\partial g}{\partial y}\right|_{(5,1)}=3,\left.\quad \frac{\partial g}{\partial x}\right|_{(2,3)}=5,\left.\quad \frac{\partial g}{\partial y}\right|_{(2,3)}=-4 .
$$

Suppose that $x=u v+v^{2}$ and $y=u^{3}-u v^{2}$. Calculate $\frac{\partial g}{\partial v}$ when $(u, v)=(-1,2)$.

