Tangent Planes and Linear Approximations

1. The volume $V=V(p, T)$ of a specific quantity of a gas is a function of the pressure p and the temperature T. Suppose that V is measured in cubic feet, T is in ${ }^{\circ} \mathrm{F}$, and p is in $\mathrm{lb} / \mathrm{in}^{2}$. Suppose, further, that $V(24,500)=23.69$.
a) Thinking physically about the situation, should $\partial V / \partial p$ at $(24,500)$ be positive or negative? Explain briefly.
b) Suppose that you can reliably measure V when p changes by as small an increment as $2 \mathrm{lb} / \mathrm{in}^{2}$ and/or when T changes by as small an increment as $20^{\circ} \mathrm{F}$.

If you're going to take a measurement of V at just one new point $\left(p_{1}, T_{1}\right)$, where $p_{1} \geq 24$ and $T_{1} \geq 500$, what should you pick for $\left(p_{1}, T_{1}\right)$ in order to have the data that you need to obtain a good approximation of $\partial V / \partial p$ at $(24,500)$? (You are not being asked to produce the approximation in this part of the problem; you are just supposed to supply the point $\left.\left(p_{1}, T_{1}\right)\right)$.
c) Assume that $V\left(p_{1}, T_{1}\right)=21.86$, where $\left(p_{1}, T_{1}\right)$ is the point that you supplied above. What approximation do you obtain for $\partial V / \partial p$ at $(p, T)=(24,500)$?
d) Assume that $\partial V / \partial T=0.0255 \mathrm{ft}^{3} /{ }^{\circ} \mathrm{F}$ at $(p, T)=(24,500)$. Combining this data with the data above, what do you obtain for the linearization of the function V at $(p, T)=(24,500)$?
2. Consider the function $f(x, y, z)=x e^{y}+x z^{2}$.
(a) Find the partial derivatives $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$ of the function f at the point $\mathbf{p}=(2,0,1)$.
(b) Find the linearization $L(x, y, z)$ of $f(x, y, z)$ at \mathbf{p}.
(c) Use the linearization of f to estimate the value of f at $(1.9,0.1,1.5)$. (The exact value of $f(1.9,0.1,1.5)$ from your calculator is worth zero points.)
3. If $2 x+3 y+2 z=9$ is the tangent plane to the graph of $z=f(x, y)$ at the point $(1,1,2)$, estimate $f(1.01,0.98)$.
4. The wind-chill index $W=W(T, v)$ is the perceived temperature when the actual temperature is T and the wind speed is v. Suppose that W and T are measured in ${ }^{\circ} \mathrm{C}$ and v is measured in km / h. Assume that $W(-20,50)=-35$ and $W(-20.5,50)=-35.6$.
a) Use data to estimate $\partial W / \partial T$ at the point $(T, v)=(-20,50)$.
b) Suppose that the value of $\partial W / \partial v$ at $(-20,50)$ is -0.2 in ${ }^{\circ} \mathrm{C} /(\mathrm{km} / \mathrm{h})$. Combining this with the data above, what do you obtain for the linearization of the function W at $(T, v)=(-20,50)$?
5. The radius of a spherical hot air balloon was estimated to be 4 meters with a possible error of at most 0.5 meters. What is the maximum error you can make in calculating the surface area of the balloon using the estimate of 4 meters?

