Section 13.6 - Flux through a Surface

1. Let $\mathbf{V}(x, y, z)=\left(z e^{y}, z \tan ^{-1} x, x^{2}+y^{2}+z^{2}\right)$, and $\mathbf{r}(u, v)=(u \cos v, u \sin v, 0)$, where $0 \leq u \leq 2$ and $0 \leq v \leq 2 \pi$. If M is the image of the parameterization \mathbf{r}, oriented upward, calculate the flux through M.
2. Let $\mathbf{V}(x, y, z)=(x, y, 2 x+2 y)$, and M be the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the unit disk, centered at the origin in the $x y$-plane, with outward orientation. Calculate the flux integral of \mathbf{V} through M.
3. Let $\mathbf{V}(x, y, z)=(x, y, z)$, and M be the disk of radius 5 , centered at $(0,7,0)$, in the plane where $y=7$, oriented so that the positive direction is in the direction of the positive y-axis. Calculate the flux integral of \mathbf{V} through M.

Section 13.8 - The Divergence Theorem

4. Let $\mathbf{V}=(3 x, 2 y, x+y)$. Let E be the solid region where $x^{2}+y^{2}+z^{2} \leq 9$ and $z \geq 0$. Let M be the boundary of E, oriented outward. Find the flux of \mathbf{V} through M.
5. Let $\mathbf{V}=(3 x, 2 y, x+y)$. Let M be the top hemisphere of radius 3, centered at the origin, oriented outward. Find the flux of \mathbf{V} through M.
6. Let $\mathbf{F}(x, y, z)=(x, y, z)$, and M consists of the portion of the graph of $z=4-x^{2}-y^{2}$, where $z \geq 0$, oriented upward. Find the flux of \mathbf{F} through M.
7. Let $\mathbf{V}(x, y, z)=(-y, x, z)$, and M be the right circular cylinder with no top and bottom, centered around the z-axis, of radius 5 , between $z=-5$ and $z=5$, oriented outward. Find the flux of \mathbf{V} through M.
8. Let $\mathbf{V}(x, y, z)=(x, y, 2 x+2 y)$, and M be the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the unit disk, centered at the origin in the $x y$-plane, with outward orientation. Calculate the flux integral of \mathbf{V} through M.

Section 13.7 - Stokes' Theorem

9. Let $\mathbf{F}=\left(z+\sin x, x+e^{y}, y+z^{3}\right)$. Let C be the circle, in the plane $y=z$, of radius 3 , centered at the origin. Let M be the closed disk bounded by C, so that $C=\partial M$. We orient M with the normal vector with the positive z coordinate. Calculate the line integral $\int_{\partial M} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$.
10. Let $\mathbf{F}=\left(e^{x}+y, x+\sin y+2 z, 3 x-5 y+z^{2}\right)$. Let M_{1} be the upper-hemisphere, of radius 1 , centered at the origin. Let M_{2} be the portion of the circular paraboloid where $z=1-x^{2}-y^{2}$, and $z \geq 0$. Both surfaces are oriented upward. Calculate the flux integrals of the curl of \mathbf{F} over M_{1} and M_{2}.
11. Consider the vector field $\mathbf{F}(x, y, z)=\left(2 y \cos z, e^{x} \sin z, e^{z}\right)$. Let M be the top hemisphere of the sphere of radius 3 , centered at the origin, oriented upward. Compute the flux integral $\iint_{M}(\vec{\nabla} \times \mathbf{F}) \cdot \mathbf{n} d S$.
12. Let $\mathbf{F}=\left(x^{3}+2 y, \sin y+z, x+\sin \left(z^{2}\right)\right)$. Let C be the curve that is the intersection of the plane $z=x+4$ with the cylinder $x^{2}+y^{2}=4$, oriented counterclockwise as viewed from above. Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$.
