(1) Find a tangent plane of the graph of $f(x, y)=x y^{3}+x^{2}$ at $(2,-2)$.
(2) Use the linear approximation to estimate

$$
(3.99)^{3}(1.01)^{4}(1.98)^{-1}
$$

We can write the linear approximation in terms of the change in f :

$$
\Delta f \approx f_{x}(a, b) \Delta x+f_{y}(a, b) \Delta y
$$

The linear approximation is often expressed in terms of differentials:

$$
d f=f_{x}(x, y) d x+f_{y}(x, y) d y=\frac{\delta f}{\delta x} d x+\frac{\delta f}{\delta y} d y
$$

The quantity $d f$ is the change in height of the tangent plane, whereas Δf is the change in the function itself. The linear approximation tells us that the two changes are approximately equal:

$$
\Delta f \approx d f
$$

(3) A person's BMI is $I=W / H^{2}$, where W is the body weight (in kilograms) and H is the body height (in meters). Estimate the change in a child's BMI if (W, H) changes from $(40,1.45)$ to $(41.5,1.47)$.

