Your Name:

Duration of the exam is 90 minutes. There are six problems, worth 50 points, and an extra credit problem, worth 2 points. Show all your work for full credit. Books, notes etc. are prohibited. Calculators are NOT permitted.

1. (i) (3 pts) Find a vector equation, parametric equations and symmetric equations for the line that passes through $(1,1,1)$ and is parallel to the line through $(2,0,-1)$ and $(4,1,3)$.
(ii) (4 pts) Determine whether the lines $\mathbf{r}_{1}(t)=\langle 0,1,1\rangle+t\langle 1,1,2\rangle$ and $\mathbf{r}_{2}(s)=\langle 2,0,3\rangle+s\langle 1,4,4\rangle$ intersect, and if so, find the point of intersection.
2. (i) (5 pts) Find the vector and scalar projections of \mathbf{a} onto \mathbf{b}, and determine whether the angle between \mathbf{a} and \mathbf{b} is acute or obtuse.

$$
\mathbf{a}=\langle-1,2,0\rangle, \quad \mathbf{b}=\langle 2,0,1\rangle
$$

(ii) (3 pts) Use the scalar triple product to determine whether the points A, B, C and D lie in the same plane.

$$
A(1,3,2), \quad B(3,-1,6), \quad C(5,2,0), \quad D(3,6,-4)
$$

3. (i) (6 pts) Compute the angle between the plane through the points $(1,0,0),(0,1,0)$, and $(0,0,1)$ and the $y z$-plane.
(ii) (3 pts) Find the intersection of the line and the plane.

$$
x+y+z=14, \quad \mathbf{r}(t)=\langle 1,1,0\rangle+t\langle 0,2,4\rangle
$$

4. (i) (5 pts) Parameterize the curve which is the intersection of the plane $y=\frac{1}{2}$ with the sphere $x^{2}+y^{2}+z^{2}=1$.
(ii) (6 pts) Find the location and velocity at $t=4$ of a particle whose path satisfies

$$
\frac{d \mathbf{r}}{d t}=\left\langle 2 t^{-1 / 2}, 6,8 t\right\rangle, \quad \mathbf{r}(1)=\langle 4,9,2\rangle
$$

5. (7 pts) Find an arc length parametrization of the circle of radius 2 with center $(1,2,5)$ in a plane parallel to the $y z$-plane.
Hint: First parameterize the circle with respect to t, and then use the Fundamental Theorem of Calculus to find t in terms of s.
6. Let C be the curve whose parameterization is given by

$$
\mathbf{r}(t)=\langle\cos t, \sin t, \ln \cos t\rangle
$$

(i) (3 pts) Find the curvature at the point $(1,0,0)$.

Hint: $\kappa(t)=\frac{\left|\mathbf{r}^{\prime}(t) \times \mathbf{r}^{\prime \prime}(t)\right|}{\left|\mathbf{r}^{\prime}(t)\right|^{3}}$
(ii) (5 pts) Find equations of the normal plane and osculating plane of the curve at the point $(1,0,0)$.

Hint: $\mathbf{T}(t)=\frac{\mathbf{r}^{\prime}(t)}{\left|\mathbf{r}^{\prime}(t)\right|}, \quad \mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left|\mathbf{T}^{\prime}(t)\right|}, \quad \mathbf{B}(t)=\mathbf{T}(t) \times \mathbf{N}(t)$

Extra Credit Problem (2 points) A plane flying due east at $200 \mathrm{~km} / \mathrm{h}$ encounters a $40-\mathrm{km} / \mathrm{h}$ wind blowing in the north-east direction. The resultant velocity of the plane is the vector $\operatorname{sum} \mathbf{v}=\mathbf{v}_{1}+\mathbf{v}_{2}$, where \mathbf{v}_{1} is the velocity vector of the plane and \mathbf{v}_{2} is the velocity vector of the wind. Than angle between \mathbf{v}_{1} and \mathbf{v}_{2} is $\frac{\pi}{4}$. Determine the resultant speed of the plane (the length of the vector \mathbf{v}).

Hint: Here I am asking you to find the magnitude of \mathbf{v}. Consider the location of the plane in the figure as the origin and write \mathbf{v}_{1} and \mathbf{v}_{2} in component form.

