- 1. Prove that if a permutation α can be expressed as a product of an even (odd) number of 2-cycles, then every decomposition of α into a product of 2-cycles must have an even (odd) number of 2-cycles.
- 2. Let $3 \leq m \leq n$. Calculate $\sigma \tau^{-1}$ for the cycles $\sigma = (1, 2, \dots, m-1)$ and $\tau = (1, 2, \dots, m-1, m)$ in S_n .
- 3. Prove that in S_n , with $n \ge 3$, any even permutation is a product of cycles of length three. **Hint:** (a,b)(b,c) = (a,b,c) and (a,b)(c,d) = (a,b,c)(b,c,d).
- 4. Prove that (a, b) cannot be written as a product of two cycles of length three.
- 5. Let S be any nonempty set, and let $\sigma \in \text{Sym}(S)$. For $x, y \in S$ define $x \sim y$ if $\sigma^n(x) = y$ for some $n \in \mathbb{Z}$. Show that \sim defines an equivalence relation on S.
- 6. Find $\langle \pi \rangle$ in \mathbb{R}^{\times} .
- 7. Prove that $\sum_{d|n} \phi(d) = n$ for any positive integer n.

Hint: Interpret the equation in the cyclic group \mathbb{Z}_n , by considering all of its subgroups.

- 8. Let $n = 2^k$ for k > 2. Prove that \mathbb{Z}_n^{\times} is not cyclic. **Hint:** Show that ± 1 and $(n/2) \pm 1$ satisfy the equation $x^2 = 1$, and that this is impossible in any cyclic group.
- 9. Show that no proper subgroup of S_4 contains both (1, 2, 3, 4) and (1, 2).
- 10. Show that the following matrices form a subgroup of $\operatorname{GL}_2(\mathbb{C})$ isomorphic to D_4 :

 $\pm \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right], \quad \pm \left[\begin{array}{cc} i & 0 \\ 0 & -i \end{array} \right], \quad \pm \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right], \quad \pm \left[\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right].$

- 11. (a) Show that $A_4 = \{ \sigma \in S_4 \mid s = \tau^2 \text{ for some } \tau \in S_4 \}.$
 - (b) Show that $A_5 = \{ \sigma \in S_5 \mid s = \tau^2 \text{ for some } \tau \in S_5 \}.$
 - (c) Show that $A_6 \supset \{\sigma \in S_6 \mid s = \tau^2 \text{ for some } \tau \in S_6\}.$
 - (d) What can you say about A_n if n > 6?
- 12. Show that in S_n the only elements which commute with the cycle $(1, 2, \ldots, n)$ are its powers.
- 13. Show that the product of two transpositions is one of (i) the identity; (ii) a 3-cycle; (iii) a product of two (nondisjoint) 3-cycles. Deduce that every element of A_n can be written as a product of 3-cycles.
- 14. Prove that every group of order n is isomorphic to a subgroup of $GL_n(\mathbb{R})$.
- 15. Show that multiplicative group \mathbb{Z}_{10}^{\times} is isomorphic to the additive group \mathbb{Z}_4 . **Hint:** Find a generator a of \mathbb{Z}_{10}^{\times} and define $\phi : \mathbb{Z}_4 \to \mathbb{Z}_{10}^{\times}$ by $\phi(n \pmod{4}) = a^n \pmod{10}$.
- 16. Show that multiplicative group \mathbb{Z}_7^{\times} is isomorphic to the additive group \mathbb{Z}_6 .
- 17. Show that \mathbb{Z}_5^{\times} is not isomorphic to \mathbb{Z}_8^{\times} by showing that the first group has an element of order 4 but the second group does not.
- 18. Is the additive group \mathbb{C} of complex numbers isomorphic to the multiplicative group \mathbb{C}^{\times} of nonzero complex numbers?
- 19. Prove that any group with three elements must be isomorphic to \mathbb{Z}_3 .
- 20. Let G be the following set of matrices of \mathbb{R} : $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$. Show that G is isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.
- 21. Let G be any group, and let a be a fixed element of G. Define a function $\phi_a : G \to G$ by $\phi_a(x) = axa^{-1}$, for all $x \in G$. Show that ϕ_a is an isomorphism.

- 22. Let G be any group. Define $\phi : G \to G$ by $\phi(x) = x^{-1}$, for all $x \in G$.
 - (a) Prove that ϕ is one-to-one and onto.
 - (b) Prove that ϕ is an isomorphism if and only if G is abelian.
- 23. Define $\phi : \mathbb{C}^{\times} \to \mathbb{C}^{\times}$ by $\phi(a+bi) = a-bi$, for all nonzero complex numbers a+bi. Show that ϕ is an isomorphism.
- 24. Prove that if m, n are positive integers such that gcd(m, n) = 1, then \mathbb{Z}_{mn}^{\times} is isomorphic to $\mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$.
- 25. Show that the cyclic group \mathbb{Z}_4 and the Klein four-group $\mathbb{Z}_2 \times \mathbb{Z}_2$ are not isomorphic. Also, find two abelian groups of order 8 that are not isomorphic.