1. Prove that if a permutation α can be expressed as a product of an even (odd) number of 2-cycles, then every decomposition of α into a product of 2-cycles must have an even (odd) number of 2 -cycles.
2. Let $3 \leq m \leq n$. Calculate $\sigma \tau^{-1}$ for the cycles $\sigma=(1,2, \ldots, m-1)$ and $\tau=(1,2, \ldots, m-1, m)$ in S_{n}.
3. Prove that in S_{n}, with $n \geq 3$, any even permutation is a product of cycles of length three.

Hint: $(a, b)(b, c)=(a, b, c)$ and $(a, b)(c, d)=(a, b, c)(b, c, d)$.
4. Prove that (a, b) cannot be written as a product of two cycles of length three.
5. Let S be any nonempty set, and let $\sigma \in \operatorname{Sym}(S)$. For $x, y \in S$ define $x \sim y$ if $\sigma^{n}(x)=y$ for some $n \in \mathbb{Z}$. Show that \sim defines an equivalence relation on S.
6. Find $\langle\pi\rangle$ in \mathbb{R}^{\times}.
7. Prove that $\sum_{d \mid n} \phi(d)=n$ for any positive integer n.

Hint: Interpret the equation in the cyclic group \mathbb{Z}_{n}, by considering all of its subgroups.
8. Let $n=2^{k}$ for $k>2$. Prove that \mathbb{Z}_{n}^{\times}is not cyclic.

Hint: Show that ± 1 and $(n / 2) \pm 1$ satisfy the equation $x^{2}=1$, and that this is impossible in any cyclic group.
9. Show that no proper subgroup of S_{4} contains both $(1,2,3,4)$ and $(1,2)$.
10. Show that the following matrices form a subgroup of $\mathrm{GL}_{2}(\mathbb{C})$ isomorphic to D_{4} :

$$
\pm\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right], \quad \pm\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right], \quad \pm\left[\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right], \quad \pm\left[\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right]
$$

11. (a) Show that $A_{4}=\left\{\sigma \in S_{4} \mid s=\tau^{2}\right.$ for some $\left.\tau \in S_{4}\right\}$.
(b) Show that $A_{5}=\left\{\sigma \in S_{5} \mid s=\tau^{2}\right.$ for some $\left.\tau \in S_{5}\right\}$.
(c) Show that $A_{6} \supset\left\{\sigma \in S_{6} \mid s=\tau^{2}\right.$ for some $\left.\tau \in S_{6}\right\}$.
(d) What can you say about A_{n} if $n>6$?
12. Show that in S_{n} the only elements which commute with the cycle $(1,2, \ldots, n)$ are its powers.
13. Show that the product of two transpositions is one of (i) the identity; (ii) a 3 -cycle; (iii) a product of two (nondisjoint) 3-cycles. Deduce that every element of A_{n} can be written as a product of 3-cycles.
14. Prove that every group of order n is isomorphic to a subgroup of $\mathrm{GL}_{\mathrm{n}}(\mathbb{R})$.
15. Show that multiplicative group \mathbb{Z}_{10}^{\times}is isomorphic to the additive group \mathbb{Z}_{4}.

Hint: Find a generator a of \mathbb{Z}_{10}^{\times}and define $\phi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{10}^{\times}$by $\phi(n(\bmod 4))=a^{n}(\bmod 10)$.
16. Show that multiplicative group \mathbb{Z}_{7}^{\times}is isomorphic to the additive group \mathbb{Z}_{6}.
17. Show that \mathbb{Z}_{5}^{\times}is not isomorphic to \mathbb{Z}_{8}^{\times}by showing that the first group has an element of order 4 but the second group does not.
18. Is the additive group \mathbb{C} of complex numbers isomorphic to the multiplicative group \mathbb{C}^{\times}of nonzero complex numbers?
19. Prove that any group with three elements must be isomorphic to \mathbb{Z}_{3}.
20. Let G be the following set of matrices of \mathbb{R} : $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \quad\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right], \quad\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right], \quad\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.

Show that G is isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
21. Let G be any group, and let a be a fixed element of G. Define a function $\phi_{a}: G \rightarrow G$ by $\phi_{a}(x)=a x a^{-1}$, for all $x \in G$. Show that ϕ_{a} is an isomorphism.
22. Let G be any group. Define $\phi: G \rightarrow G$ by $\phi(x)=x^{-1}$, for all $x \in G$.
(a) Prove that ϕ is one-to-one and onto.
(b) Prove that ϕ is an isomorphism if and only if G is abelian.
23. Define $\phi: \mathbb{C}^{\times} \rightarrow \mathbb{C}^{\times}$by $\phi(a+b i)=a-b i$, for all nonzero complex numbers $a+b i$. Show that ϕ is an isomorphism.
24. Prove that if m, n are positive integers such that $\operatorname{gcd}(m, n)=1$, then $\mathbb{Z}_{m n}^{\times}$is isomorphic to $\mathbb{Z}_{m}^{\times} \times \mathbb{Z}_{n}^{\times}$.
25. Show that the cyclic group \mathbb{Z}_{4} and the Klein four-group $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ are not isomorphic. Also, find two abelian groups of order 8 that are not isomorphic.

