1. Consider the set of all multiples of a fixed positive integer n, denoted by

$$
n \mathbb{Z}=\{x \in \mathbb{Z} \mid x=n k \text { for some } k \in \mathbb{Z}\}
$$

Show that $n \mathbb{Z}$ is a subgroup of \mathbb{Z}.
2. The set $\{1,2, \ldots, n-1\}$ is a group under multiplication modulo n if and only if n is prime.
3. (i) Is the set of all 2×2 matrices with real entries a group under matrix multiplication?
(ii) Is the set of all 2×2 matrices with real entries a group under componentwise addition?
(iii) Is the set of integers a group under subtraction?
4. Show that if G is a finite group with even number of elements, then there must exist an element $a \in G$ with $a \neq e$ such that $a^{2}=e$.
5. Let G be a nonabelian group. Then there exists a pair of elements, say a and b, that do not commute, i.e. $a b \neq b a$.
(i) Is $a b \in\{e, a, b\}$?
(ii) Is $b a \in\{e, a, b\}$?
6. The set of all $n \times n$ matrices over \mathbb{R} with determinant equal to 1 is called the special linear group over \mathbb{R}, and is denoted by $\mathrm{SL}_{n}(\mathbb{R})$. Show that $\mathrm{SL}_{n}(\mathbb{R})$ is a group under matrix multiplication. In fact, $\mathrm{SL}_{n}(\mathbb{R})$ is a subgroup of $\mathrm{GL}_{n}(\mathbb{R})$, the general linear group of degree n over the real numbers.
7. Let G be a group. For $a, b \in G$, prove that $(a b)^{n}=a^{n} b^{n}$ for all $n \in \mathbb{Z}$ if and only if $a b=b a$.
8. Show that the set

$$
A=\left\{f_{m, b}: \mathbb{R} \mapsto \mathbb{R} \mid m \neq 0 \text { and } f_{m, b}(x)=m x+b\right\}
$$

of affine functions from \mathbb{R} to \mathbb{R} forms a group under composition of functions.
9. In the video posted on Canvas in December, I talked about D_{4}, the set of symmetries of a square. The group D_{4} is called the dihedral group of order 8 . Describe each symmetry in D_{3}, the set of symmetries in an equilateral triangle. The group D_{3} is called the dihedral group of order 6 .
(i) Write out the complete Cayley table for D_{3}.
(ii) Is D_{3} abelian?
10. The analysis carried out for a square and triangle can be done for a regular pentagon or any regular n-gon $(n \geq 3)$. The corresponding group is denoted by D_{n} and is called the dihedral group of order $2 n$. For $n \geq 3$, describe the elements of D_{n}.

Hint: You will need to consider two cases - n even and n odd.

