1. Consider the set of all multiples of a fixed positive integer n, denoted by

$$n\mathbb{Z} = \{x \in \mathbb{Z} \mid x = nk \text{ for some } k \in \mathbb{Z}\}.$$

Show that $n\mathbb{Z}$ is a subgroup of \mathbb{Z} .

- 2. The set $\{1, 2, \ldots, n-1\}$ is a group under multiplication modulo n if and only if n is prime.
- 3. (i) Is the set of all 2×2 matrices with real entries a group under matrix multiplication?
 - (ii) Is the set of all 2×2 matrices with real entries a group under componentwise addition?
 - (iii) Is the set of integers a group under subtraction?
- 4. Show that if G is a finite group with even number of elements, then there must exist an element $a \in G$ with $a \neq e$ such that $a^2 = e$.
- 5. Let G be a nonabelian group. Then there exists a pair of elements, say a and b, that do not commute, i.e. $ab \neq ba$.
 - (i) Is $ab \in \{e, a, b\}$?
 - (ii) Is $ba \in \{e, a, b\}$?
- 6. The set of all $n \times n$ matrices over \mathbb{R} with determinant equal to 1 is called the **special linear group over** \mathbb{R} , and is denoted by $\mathrm{SL}_n(\mathbb{R})$. Show that $\mathrm{SL}_n(\mathbb{R})$ is a group under matrix multiplication. In fact, $\mathrm{SL}_n(\mathbb{R})$ is a subgroup of $\mathrm{GL}_n(\mathbb{R})$, the **general linear group of degree** n over the real numbers.
- 7. Let G be a group. For $a, b \in G$, prove that $(ab)^n = a^n b^n$ for all $n \in \mathbb{Z}$ if and only if ab = ba.
- 8. Show that the set

$$A = \{ f_{m,b} : \mathbb{R} \mapsto \mathbb{R} \mid m \neq 0 \text{ and } f_{m,b}(x) = mx + b \}$$

of affine functions from \mathbb{R} to \mathbb{R} forms a group under composition of functions.

- 9. In the video posted on Canvas in December, I talked about D_4 , the set of symmetries of a square. The group D_4 is called the *dihedral group of order 8*. Describe each symmetry in D_3 , the set of symmetries in an equilateral triangle. The group D_3 is called the *dihedral group of order 6*.
 - (i) Write out the complete Cayley table for D_3 .
 - (ii) Is D_3 abelian?
- 10. The analysis carried out for a square and triangle can be done for a regular pentagon or any regular n-gon $(n \ge 3)$. The corresponding group is denoted by D_n and is called the *dihedral group of order 2n*. For $n \ge 3$, describe the elements of D_n .

Hint: You will need to consider two cases - n even and n odd.