- 1. For each binary operation * defined on a set below, determine whether or not * gives a group structure on the set. If it is not a group, say which axioms fail to hold.
 - (a) Define * on \mathbb{Z} by a * b = ab.
 - (b) Define * on \mathbb{Z} by $a * b = \max\{a, b\}$
 - (c) Define * on \mathbb{Z} by a * b = a b.
 - (d) Define * on \mathbb{Z} by a * b = |ab|.
 - (e) Define * on \mathbb{R}^+ by a * b = ab.
 - (f) Define * on \mathbb{Q} by a * b = ab.
- 2. Let $S = \mathbb{R} \setminus \{-1\}$. Define * on S by

$$a * b = a + b + ab.$$

Show that (S, *) is a group.

- 3. Let $G = \{x \in \mathbb{R} \mid x > 0 \text{ and } x \neq 1\}$. Define the operation * on G by $a * b = a^{\ln b}$, for all $a, b \in G$. Prove that G is an abelian group under the operation *.
- 4. Let G be a group. Prove that if $x^2 = e$ for all $x \in G$, then G is abelian.