Your Name:

Duration of the mid-term exam is 90 minutes. There are five problems, worth 50 points, and an extra credit problem, worth 2 points. Show all your work for full credit. Books, notes etc. are prohibited. Calculators are NOT permitted.

1. (a) (5 points) In $\mathrm{GL}_{2}(\mathbb{R})$, compute the centralizer of the matrix $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$.
(b) (5 points) Compute the center of $\mathrm{GL}_{2}(\mathbb{R})$.
2. (a) (5 points) Find the cyclic subgroup of \mathbb{C}^{\times}generated by $(-\sqrt{2}+\sqrt{2} i) / 2$.
(b) (5 points) In $\mathrm{GL}_{2}(\mathbb{R})$, find the order of the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
3. (a) (5 points) Let $G=\mathrm{GL}_{2}(\mathbb{R})$. Does the subset S of G defined by

$$
S=\left\{\left.\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \right\rvert\, b=c\right\}
$$

of symmetric 2×2 matrices form a subgroup of G ?
(b) (5 points) Let $G=\langle a\rangle$ and $|a|=20$. Find all the subgroups of G.
4. (5 points each) Let a be an element of the group G. Then prove the following.
(i) If a has infinite order, then $a^{k} \neq a^{m}$ for all integers $k \neq m$.
(ii) If a has finite order and $k \in \mathbb{Z}$, then $a^{k}=e$ if and only if $|a|$ divides k.
(iii) If a has finite order $|a|=n$, then for all integers k, m, we have $a^{k}=a^{m}$ if and only if $k \equiv m(\bmod n)$. Furthermore, $|\langle a\rangle|=|a|$.
5. (5 points) State Euler's Theorem and give a group theoretic proof of it.

EXTRA CREDIT PROBLEM Let G be a finite group, let $n>2$ be an integer, and let S be the set of elements of G that have order n. Show that S has an even number of elements.

