Your Name:

Duration of the mid-term exam is 90 minutes. There are five problems, worth 50 points, and an extra credit problem, worth 2 points. Show all your work for full credit. Books, notes etc. are prohibited. Calculators are NOT permitted.

1. (a) (5 points) In $GL_2(\mathbb{R})$, compute the centralizer of the matrix $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$.

(b) (5 points) Compute the center of $GL_2(\mathbb{R})$.

2. (a) (5 points) Find the cyclic subgroup of \mathbb{C}^{\times} generated by $(-\sqrt{2} + \sqrt{2}i)/2$.

(b) (5 points) In $GL_2(\mathbb{R})$, find the order of the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

3. (a) (5 points) Let $G = GL_2(\mathbb{R})$. Does the subset S of G defined by

$$S = \left\{ \left[\begin{array}{cc} a & b \\ c & d \end{array} \right] \middle| b = c \right\}$$

of symmetric 2×2 matrices form a subgroup of G?

(b) (5 points) Let $G = \langle a \rangle$ and |a| = 20. Find all the subgroups of G.

- 4. (5 points each) Let a be an element of the group G. Then prove the following.
 - (i) If a has infinite order, then $a^k \neq a^m$ for all integers $k \neq m$.

(ii) If a has finite order and $k \in \mathbb{Z}$, then $a^k = e$ if and only if |a| divides k.

(iii) If a has finite order |a| = n, then for all integers k, m, we have $a^k = a^m$ if and only if $k \equiv m \pmod{n}$. Furthermore, $|\langle a \rangle| = |a|$.

5. (5 points) State Euler's Theorem and give a group theoretic proof of it.

EXTRA CREDIT PROBLEM Let G be a finite group, let n > 2 be an integer, and let S be the set of elements of G that have order n. Show that S has an even number of elements.

WORKSHEET