On quasi-planar monomials over finite fields

Mohit Pal

(joint work with S.U. Hasan, C. Riera and P. Stănică)

University of Bergen, Norway

mohit.pal@uib.no

April 22, 2024

∃ >

- Notations and Definitions
- Differential Uniformity
- Extended Differential Uniformity
- Dickson Polynomial
- Our Contribution
- Conjecture

• We denote, by \mathbb{F}_q , the finite field with $q = p^n$ elements, where p is a prime number and n is a positive integer.

- We denote, by \mathbb{F}_q , the finite field with $q = p^n$ elements, where p is a prime number and n is a positive integer.
- By 𝔽^{*}_q = ⟨g⟩, we denote the multiplicative cyclic group of nonzero elements of 𝔽_q, where g is a primitive element of 𝔽_q.

- We denote, by \mathbb{F}_q , the finite field with $q = p^n$ elements, where p is a prime number and n is a positive integer.
- By 𝔽^{*}_q = ⟨g⟩, we denote the multiplicative cyclic group of nonzero elements of 𝔽_q, where g is a primitive element of 𝔽_q.
- Let f be a function form the finite field 𝔽_q to itself then f can be uniquely represented as a univariate polynomial over 𝔽_q of the form
 f(X) = ∑_{i=0}^{q-1} a_iXⁱ, a_i ∈ 𝔽_q.

- We denote, by \mathbb{F}_q , the finite field with $q = p^n$ elements, where p is a prime number and n is a positive integer.
- By $\mathbb{F}_q^* = \langle g \rangle$, we denote the multiplicative cyclic group of nonzero elements of \mathbb{F}_q , where g is a primitive element of \mathbb{F}_q .
- Let f be a function form the finite field 𝔽_q to itself then f can be uniquely represented as a univariate polynomial over 𝔽_q of the form
 f(X) = ∑_{i=0}^{q-1} a_iXⁱ, a_i ∈ 𝔽_q.
- We call a polynomial $f \in \mathbb{F}_q[X]$, a permutation polynomial (PP) over \mathbb{F}_q if the associated mapping $x \mapsto f(x)$ is a bijection from \mathbb{F}_q to \mathbb{F}_q .

 One of the most important developments in block cipher cryptanalysis was the invention of differential cryptanalysis by Biham and Shamir¹.

¹Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. **4**(1), 3–72 (1991)

Mohit Pal (UiB)

- One of the most important developments in block cipher cryptanalysis was the invention of differential cryptanalysis by Biham and Shamir¹.
- Let f be a function from \mathbb{F}_q to itself.

¹Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. **4**(1), 3–72 (1991)

Mohit Pal (UiB)

- One of the most important developments in block cipher cryptanalysis was the invention of differential cryptanalysis by Biham and Shamir¹.
- Let f be a function from \mathbb{F}_q to itself.
- For any $a \in \mathbb{F}_q$, the derivative of f in the direction of a is defined as

$$D_f(a):=f(X+a)-f(X),$$

for all $X \in \mathbb{F}_q$.

¹Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. **4**(1), 3–72 (1991)

- One of the most important developments in block cipher cryptanalysis was the invention of differential cryptanalysis by Biham and Shamir¹.
- Let f be a function from \mathbb{F}_q to itself.
- For any $a \in \mathbb{F}_q$, the derivative of f in the direction of a is defined as

$$D_f(a) := f(X+a) - f(X),$$

for all $X \in \mathbb{F}_q$.

For any a, b ∈ 𝔽_q, the difference distribution table (DDT) entry of f at point (a, b) is defined as

$$\Delta_f(a,b) := |\{X \in \mathbb{F}_q \mid f(X+a) - f(X) = b\}|.$$

¹Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. **4**(1), 3–72 (1991)

Mohit Pal (UiB)

Quasi-planar monomials over finite fields

April 22, 2024

- One of the most important developments in block cipher cryptanalysis was the invention of differential cryptanalysis by Biham and Shamir¹.
- Let f be a function from \mathbb{F}_q to itself.
- For any $a \in \mathbb{F}_q$, the derivative of f in the direction of a is defined as

$$D_f(a) := f(X+a) - f(X),$$

for all $X \in \mathbb{F}_q$.

For any a, b ∈ 𝔽_q, the difference distribution table (DDT) entry of f at point (a, b) is defined as

$$\Delta_f(a,b) := |\{X \in \mathbb{F}_q \mid f(X+a) - f(X) = b\}|.$$

• The differential uniformity of f, denoted by Δ_f , is given by

$$\Delta_f := \max\{\Delta_f(a, b) \mid a \in \mathbb{F}_q^*, b \in \mathbb{F}_q\}.$$

¹Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. **4**(1), 3–72 (1991)

• Thus, a function f is called differentially Δ_f -uniform if for every $a \in \mathbb{F}_q^*$ and every $b \in \mathbb{F}_q$, the equation f(X + a) - f(X) = b admits at most Δ_f solutions.

- Thus, a function f is called differentially Δ_f -uniform if for every $a \in \mathbb{F}_q^*$ and every $b \in \mathbb{F}_q$, the equation f(X + a) f(X) = b admits at most Δ_f solutions.
- When $\Delta_f = 1$, we say that the function f is perfect nonlinear (PN) function (or **planar function**).

- Thus, a function f is called differentially Δ_f -uniform if for every $a \in \mathbb{F}_q^*$ and every $b \in \mathbb{F}_q$, the equation f(X + a) f(X) = b admits at most Δ_f solutions.
- When $\Delta_f = 1$, we say that the function f is perfect nonlinear (PN) function (or **planar function**).
- When $\Delta_f = 2$, we say that the function f is almost perfect nonlinear (APN) function.

Extended Difference Distribution Table

• In 2020, Ellingsen et al.² extentended the notion of the differential unifomity.

²P. Ellingsen, P. Felke, C. Riera, P. Stănică, A. Tkachenko, *C-differentials, multiplicative uniformity and (almost) perfect c-nonlinearity*, IEEE Trans. Inform. Theory 66:9 (2020), 5781–5789.

Mohit Pal (<u>UiB)</u>

Extended Difference Distribution Table

- In 2020, Ellingsen et al.² extentended the notion of the differential unifomity.
- For any $a, c \in \mathbb{F}_q$, the *c*-derivative of *f* in the direction of *a* is defined as

$$_{c}D_{f}(a):=f(X+a)-cf(X),$$

for all $X \in \mathbb{F}_q$.

²P. Ellingsen, P. Felke, C. Riera, P. Stănică, A. Tkachenko, *C-differentials, multiplicative uniformity and (almost) perfect c-nonlinearity*, IEEE Trans. Inform. Theory 66:9 (2020), 5781–5789.

Mohit Pal (UiB)

Extended Difference Distribution Table

- In 2020, Ellingsen et al.² extentended the notion of the differential unifomity.
- For any a, c ∈ 𝔽_q, the c-derivative of f in the direction of a is defined as

$$_{c}D_{f}(a):=f(X+a)-cf(X),$$

for all $X \in \mathbb{F}_q$.

 For any a, b, c ∈ 𝔽_q, the c-difference distribution table (DDT) entry of f at point (a, b) is defined as

$$_{c}\Delta_{f}(a,b) = |\{X \in \mathbb{F}_{q} \mid f(X+a) - cf(X) = b\}|.$$

²P. Ellingsen, P. Felke, C. Riera, P. Stănică, A. Tkachenko, *C-differentials, multiplicative uniformity and (almost) perfect c-nonlinearity*, IEEE Trans. Inform. Theory 66:9 (2020), 5781–5789.

Mohit Pal (UiB)

 $_{c}\Delta_{f} = \max\{_{c}\Delta_{f}(a, b) \mid a, b \in \mathbb{F}_{q} \text{ and } a \neq 0 \text{ if } c = 1\}.$

э

$$_{c}\Delta_{f} = \max\{_{c}\Delta_{f}(a, b) \mid a, b \in \mathbb{F}_{q} \text{ and } a \neq 0 \text{ if } c = 1\}.$$

• When $_{c}\Delta_{f} = 1$, we say that the function f is perfect c-nonlinear (PcN) function (or c-planar function).

$$_{c}\Delta_{f} = \max\{_{c}\Delta_{f}(a, b) \mid a, b \in \mathbb{F}_{q} \text{ and } a \neq 0 \text{ if } c = 1\}.$$

- When $_{c}\Delta_{f} = 1$, we say that the function f is perfect c-nonlinear (PcN) function (or c-planar function).
- When p is odd and c = -1 then we call a c-planar function, **quasi-planar**.

$$_{c}\Delta_{f} = \max\{_{c}\Delta_{f}(a, b) \mid a, b \in \mathbb{F}_{q} \text{ and } a \neq 0 \text{ if } c = 1\}.$$

- When $_{c}\Delta_{f} = 1$, we say that the function f is perfect c-nonlinear (PcN) function (or c-planar function).
- When p is odd and c = -1 then we call a c-planar function, **quasi-planar**.
- When $_{c}\Delta_{f} = 2$, we say that the function f is almost perfect c-nonlinear (APcN) function.

 A function f is planar if and only if f(X + a) - f(X) is a permutation polynomial for all a ∈ ℝ^{*}_q.

.∋...>

< 1 k

- A function f is planar if and only if f(X + a) f(X) is a permutation polynomial for all a ∈ ℝ^{*}_q.
- A permutation polynomial can never be a planar function.

- A function f is planar if and only if f(X + a) f(X) is a permutation polynomial for all a ∈ ℝ^{*}_q.
- A permutation polynomial can never be a planar function.
- A function f is quasi-planar if and only if f(X + a) + f(X) is a permutation polynomial for all $a \in \mathbb{F}_q$.

- A function f is planar if and only if f(X + a) f(X) is a permutation polynomial for all a ∈ 𝔽^{*}_q.
- A permutation polynomial can never be a planar function.
- A function f is quasi-planar if and only if f(X + a) + f(X) is a permutation polynomial for all $a \in \mathbb{F}_q$.
- If a function *f* is quasi-planar then it has to be a permutation polynomial.

A monomial X^d is a permutation polynomial over 𝔽_q if and only if gcd(d, q − 1) = 1.

- A monomial X^d is a permutation polynomial over 𝔽_q if and only if gcd(d, q − 1) = 1.
- A linearized polynomial over \mathbb{F}_q is a polynomial of the form

$$f(X) = \sum_{i=0}^{n-1} a_i X^{p^i} \in \mathbb{F}_{p^n}[X].$$

- A monomial X^d is a permutation polynomial over 𝔽_q if and only if gcd(d, q − 1) = 1.
- A linearized polynomial over \mathbb{F}_q is a polynomial of the form

$$f(X) = \sum_{i=0}^{n-1} a_i X^{p^i} \in \mathbb{F}_{p^n}[X].$$

• A linearized polynomial is a permutation polynomial if and only if 0 is its only root in \mathbb{F}_q .

Dickson Polynomial

 We recall the Dickson's original approach of defining the Dickson polynomial D_d(X, a), where d is a positive integer and a ∈ F_q.

< A >

< ∃⇒

Dickson Polynomial

- We recall the Dickson's original approach of defining the Dickson polynomial $D_d(X, a)$, where d is a positive integer and $a \in \mathbb{F}_q$.
- In fact, the *d*-th Dickson polynomial of the first kind $D_d(X, a)$ admits the following representation

$$u_1^d + u_2^d = \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} \frac{d}{d-i} {\binom{d-i}{i}} (-u_1 u_2)^i (u_1 + u_2)^{d-2i}$$

$$= D_d (u_1 + u_2, u_1 u_2),$$
(1)

where u_1, u_2 are indeterminates and

$$D_d(X,a) = \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} \frac{d}{d-i} \binom{d-i}{i} (-a)^i X^{d-2i}.$$

Dickson Polynomial

- We recall the Dickson's original approach of defining the Dickson polynomial $D_d(X, a)$, where d is a positive integer and $a \in \mathbb{F}_q$.
- In fact, the *d*-th Dickson polynomial of the first kind $D_d(X, a)$ admits the following representation

$$u_1^d + u_2^d = \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} \frac{d}{d-i} {\binom{d-i}{i}} (-u_1 u_2)^i (u_1 + u_2)^{d-2i}$$

$$= D_d (u_1 + u_2, u_1 u_2),$$
(1)

where u_1, u_2 are indeterminates and

$$D_d(X,a) = \sum_{i=0}^{\lfloor \frac{d}{2} \rfloor} \frac{d}{d-i} {d-i \choose i} (-a)^i X^{d-2i}.$$

• A Dickson polynomial $D_d(X, a)$ is a permutation polynomial if and only if $gcd(d, q^2 - 1) = 1$.

Mohit Pal (UiB)

April 22, 2024

Quasi-planar monomials

Lemma (HPRS)

A monomial X^d is quasi-planar in \mathbb{F}_{p^n} if and only if X^d and $(X+1)^d + (X-1)^d$ are permutations of \mathbb{F}_{p^n} .

Proof: For $a \neq 0$, $(X + a)^d + X^d$ is a permutation of \mathbb{F}_{p^n} if and only if

$$a^{d} \left[\left(\frac{X}{a} + 1 \right)^{d} + \left(\frac{X}{a} \right)^{d} \right] \text{ is a permutation of } \mathbb{F}_{p^{n}}$$

$$\iff \left(\frac{X}{a} + 1 \right)^{d} + \left(\frac{X}{a} \right)^{d} \text{ is a permutation of } \mathbb{F}_{p^{n}}$$

$$\iff (y+1)^{d} + y^{d} \text{ is a permutation of } \mathbb{F}_{p^{n}}; \text{ where } ay = X$$

$$\iff \left(\frac{2y+1+1}{2} \right)^{d} + \left(\frac{2y+1-1}{2} \right)^{d} \text{ is a permutation of } \mathbb{F}_{p^{n}}$$

$$\stackrel{z:=2y+1}{\iff} \left(\frac{1}{2} \right)^{d} \left[(z+1)^{d} + (z-1)^{d} \right] \text{ is a permutation of } \mathbb{F}_{p^{n}}$$

$$\stackrel{z:=2y+1}{\iff} \left(\frac{1}{2} \right)^{d} \left[(z+1)^{d} + (z-1)^{d} \right] \text{ is a permutation of } \mathbb{F}_{p^{n}}$$

$$\stackrel{(z+1)^{d}}{\iff} (z+1)^{d} + (z-1)^{d} \text{ is a permutation of } \mathbb{F}_{p^{n}}$$

/19

Let p be an odd prime, d be a positive integer such that

$$d = a_0 + a_1p + a_2p^2 + \cdots + a_kp^k$$

for some $k\geq 0,$ where $a_i\in\{0,1,\cdots,p-1\}$ and $a_0,a_k\neq 0,$ then

$$(X+1)^d + (X-1)^d = 2D_d(X,\epsilon)$$

for some $\epsilon \in \mathbb{F}_p^*$ if and only if either (1) d = 1, 2, 3; or (2) $a_0 = \frac{p+1}{2}$ and $a_j = \frac{p-1}{2} \quad \forall j \in \{1, 2, \dots, k\} \quad \left(\text{i.e.}, d = \frac{p^{k+1}+1}{2}\right)$.

The power map $X^{\frac{p^{\ell}+1}{2}}$ is a permutation of \mathbb{F}_{p^n} if and only if any one of the following conditions hold:

- (1) $\ell = 0;$
- (2) ℓ is even and *n* is odd;
- (3) ℓ is even and *n* is even together with $t_2 \ge t_1$, where $n = 2^{t_1}u$ and $\ell = 2^{t_2}v$ such that $2 \nmid u, v$;
- (4) ℓ is odd, *n* is odd and $p \equiv 1 \pmod{4}$.

If both ℓ , n are odd and $p \equiv 1 \pmod{4}$, then the power map $X^{\frac{p^{\ell}+1}{2}}$ is not quasi-planar over \mathbb{F}_{p^n} .

Proof: Since ℓ is odd and $p \equiv 1 \pmod{4}$, $\frac{p^{\ell} + 1}{2}$ is odd. Notice that $X^{\frac{p^{\ell}+1}{2}}$ is PcN over \mathbb{F}_{p^n} $\iff (X+1)^{\frac{p^{\ell}+1}{2}} + (X-1)^{\frac{p^{\ell}+1}{2}}$ is a permutation of \mathbb{F}_{p^n} $\iff D_{\frac{p^{\ell+1}}{2}}\left(X, \frac{1}{4}\right)$ is a permutation of $\mathbb{F}_{p^n}, \forall \ 1 \leq \ell < n$ $\iff \gcd\left(\frac{p^{\ell}+1}{2}, p^{2n}-1\right) = 1$ \iff gcd $(p^{\ell}+1, p^{2n}-1) = 2$ $\iff \frac{2n}{\operatorname{gcd}(\ell, 2n)}$ is odd. But since ℓ and n are odd, $\frac{2n}{\gcd(\ell, 2n)}$ is never odd and we are done.

April 22, 2024

14 / 19

The power map $X^{\frac{p^{\ell}+1}{2}}$ is quasi-planar over \mathbb{F}_{p^n} if and only if any one of the following conditions holds:

- (1) $\ell = 0;$
- (2) ℓ even and *n* odd;
- (3) ℓ even and *n* even together with $t_2 \ge t_1 + 1$, where $n = 2^{t_1}u$ and $\ell = 2^{t_2}v$ such that $2 \nmid u, v$.

In 2020, Bartoli and Timpanella 3 proved the following theorem.

Theorem (BT)

Let $d \in \{0, 1, ..., p-1\}$. Then the monomial X^d is quasi-planar over \mathbb{F}_p if and only if d = 1.

³D. Bartoli, M. Timpanella, *On a generalization of planar functions*, J. Algebr. Comb. 52 (2020),187–213.

Mohit Pal (UiB)

In 2020, Bartoli and Timpanella ⁴ proved the following theorem.

Theorem (BT)

Let

$$d \in \left\{ p^{i}, p^{i}(p^{2}-p+1), p^{i}\left(rac{p^{2}+1}{2}
ight): i=0,1,2
ight\}$$

Then the monomial X^d is quasi-planar over \mathbb{F}_{p^3} .

⁴D. Bartoli, M. Timpanella, *On a generalization of planar functions*, J. Algebr. Comb. 52 (2020),187–213.

Mohit Pal (UiB)

Quasi-planar monomials over finite fields

April 22, 2024

Conjecture (Bartoli and Timpanella)

Let p be an odd prime. Then the monomial X^d is quasi-planar over \mathbb{F}_{p^3} if and only if

$$d \in \left\{ p^{i}, p^{i}(p^{2}-p+1), p^{i}\left(rac{p^{2}+1}{2}
ight) : i=0,1,2
ight\}.$$

Thank you for your attention!

∃ >