(1) Consider the set $V = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is continuous}\}$. We usually denote this set of functions by $C(\mathbb{R})$. Recall that f is continuous if and only if for all $a \in \mathbb{R}$, we have $\lim_{x \to a} f(x) = f(a)$. We define vector sum and scalar multiplication in $C(\mathbb{R})$ as usual for functions. Prove that $C(\mathbb{R})$ is a vector space.

- (2) Let $V = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ is differentiable everywhere, and } f'(x) \in C(\mathbb{R})\}$. The elements of V are called continuously differentiable functions and the set V is usually denoted by $C^1(\mathbb{R})$. Show that $C^1(\mathbb{R})$ is a subspace of $C(\mathbb{R})$.
- (3) Let $C^2(\mathbb{R})$ denote the set of functions $f \in C(\mathbb{R})$ such that f is twice differentiable and $f'' \in C(\mathbb{R})$. Show that $C^2(\mathbb{R})$ is a subspace of $C(\mathbb{R})$.
- (4) Determine whether W is a subspace of V.
 - (a) $V = \mathbb{R}^3$, $W = \{(x_1, x_2, x_3) | 4x_1 + 3x_2 2x_3 = 0 \text{ and } x_1 x_3 = 0\}.$
 - (b) $V = C(\mathbb{R}), W = \{ f \in C(\mathbb{R}) \mid f(2) = 0 \}.$
 - (c) $V = \mathbb{R}^2$, $W = \{(x_1, x_2) | x_1^3 x_2^2 = 0\}.$
 - (d) $V = C^1(\mathbb{R}), W = \{ f \mid f'(x) + 4f(x) = 0 \text{ for all } x \in \mathbb{R} \}.$
 - (e) $V = C^1(\mathbb{R}), W = \{f \mid \sin(x) \cdot f'(x) + f(x) = 6 \text{ for all } x \in \mathbb{R}\}.$
- (5) Let W be a subspace of a vector space V, let $\mathbf{y} \in V$, and define the set

 $\mathbf{y} + W = \{\mathbf{x} \in V \mid \mathbf{x} = \mathbf{y} + \mathbf{w} \text{ for some } \mathbf{w} \in W\}.$

Show that $\mathbf{y} + W$ is a subspace of V if and only if $\mathbf{y} \in W$.

- (6) (a) Let F([a,b]) denote the set of all functions $f:[a,b] \to \mathbb{R}$, and C([a,b]) denote the set of continuous functions on the closed interval $[a,b] \subset \mathbb{R}$. Show that C([a,b]) is a subspace of the vector space F([a,b]).
 - (b) Let $C^{\infty}(\mathbb{R})$ denote the set of functions in $F(\mathbb{R})$ that have derivatives of all orders. Show that $C^{\infty}(\mathbb{R})$ is a subspace of $F(\mathbb{R})$.
- (7) (a) Show that the only subspaces of \mathbb{R}^2 are the zero subspace, \mathbb{R}^2 itself, and the lines through the origin.
 - (b) Show that if V_1 is a subspace of V_2 and V_2 is a subspace of V_3 , then V_1 is a subspace of V_3 .

(8) Show that the subset
$$W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_{2 \times 2}(\mathbb{R}) \end{bmatrix} | 3a_{11} - 2a_{22} = 0 \right\}$$
 is a subspace of $M_{2 \times 2}(\mathbb{R})$

- (9) Show that the subset $W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_{2 \times 2}(\mathbb{R}) \right| a_{12} = a_{21} \right\}$ is a subspace of $M_{2 \times 2}(\mathbb{R})$. The set W is the set of symmetric matrices of size 2×2 .
- (10) Show that the subset $W = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in M_{2 \times 2}(\mathbb{R}) \right| a_{11} = a_{22} = 0 \text{ and } a_{12} = -a_{21} \right\}$ is a subspace of $M_{2 \times 2}(\mathbb{R})$. The set W is the set of skew-symmetric matrices of size 2×2 .