Your Name:

Duration of the Quiz is 25 minutes. There are two problems, worth 20 points. Show all your work for full credit. Books, notes etc. are prohibited.

- (1) (2 points each) Determine whether the statements that follow are true or false, and justify your answer.
 - (a) If A is a 3 × 4 matrix of rank 3, then the system $A\vec{x} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ must have infinitely many solutions.
 - (b) If two matrices A and B have the same reduced row-echelon form, then the equations $A\vec{x} = \vec{0}$ and $B\vec{x} = \vec{0}$ must have the same solutions.
 - (c) The linear system $A\vec{x} = \vec{b}$ is consistent if and only if $\operatorname{rank}(A) = \operatorname{rank}[A \mid \vec{b}]$.
 - (d) If A and B are matrices of the same size, then the formula rank(A + B) = rank(A) + rank(B) must hold.
 - (e) If vector \vec{w} is a linear combination of \vec{u} and \vec{v} , then $\vec{u} + \vec{v} + \vec{w}$ must be a linear combination of \vec{u} and $\vec{u} + \vec{v}$.
 - (f) If the system $A\vec{x} = \vec{b}$ has a unique solution, then A must be a square matrix.

(2) It is known that the vector $\begin{bmatrix} 2\\1\\3 \end{bmatrix}$ can be uniquely written as a linear combination of the vectors $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\2 \end{bmatrix}$, $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

That is, there exist unique scalars a, b, and c such that $\begin{bmatrix} 2\\1\\3 \end{bmatrix} = a \begin{bmatrix} 1\\1\\1 \end{bmatrix} + b \begin{bmatrix} 1\\2\\2 \end{bmatrix} + c \begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

(a) (1 point) Write down a system of equations to find a, b, and c.

- (b) (1 point) Write the system in part (a) in matrix form.
- (c) (4 points) Find the inverse of the coefficient matrix using Gauss-Jordan method.

(d) (2 points) Solve the system using the inverse of the coefficient matrix.