Homework Assignment 3

(1) (a) Find all vectors in \mathbb{R}^4 that are perpendicular to the three vectors

1		$\lceil 1 \rceil$		1	
1		2		9	
1	,	3	,	9	•
1		4		7	

(b) Write down the augmented matrix of the linear system that must be solved to find all solutions x_1, x_2, x_3 of the equation

$$\vec{b} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + x_3 \vec{v}_3,$$

where

$$\vec{b} = \begin{bmatrix} -8\\ -1\\ 2\\ 15 \end{bmatrix}, \ \vec{v}_1 = \begin{bmatrix} 1\\ 4\\ 7\\ 5 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} 2\\ 5\\ 8\\ 3 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 4\\ 6\\ 9\\ 1 \end{bmatrix}.$$

Use Mathematica to find the rref of the augmented matrix, and then find all solutions x_1 , x_2 , x_3 . Attach a printout of your Mathematica code to your homework submission.

(2) Consider the equations

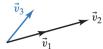
$$x + 2y + 3z = 4$$
$$x + ky + 4z = 6$$
$$x + 2y + (k + 2)z = 6$$

where k is an arbitrary constant.

- (a) What is the augmented matrix of this system of equations?
- (b) For which values of the constant k does this system have a unique solution?
- (c) When is there no solution?
- (d) When are there infinitely many solutions?
- (3) (a) Consider the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ in \mathbb{R}^2 shown in the accompanying figure. Vectors \vec{v}_1 and \vec{v}_2 are parallel. How many solutions x, y does the system

$$x\vec{v}_1 + y\vec{v}_2 = \vec{v}_3$$

have? Argue geometrically.



(b) Consider the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ in \mathbb{R}^2 shown in the accompanying figure. How many solutions x, y does the system

$$x\vec{v}_1 + y\vec{v}_2 = \vec{v}_3$$

have? Argue geometrically.

(c) Consider the vectors $\vec{v_1}$, $\vec{v_2}$, $\vec{v_3}$, $\vec{v_4}$ in \mathbb{R}^2 shown in the accompanying figure. Arguing geometrically, find two solutions x, y, z of the linear system

$$x\vec{v}_1 + y\vec{v}_2 + z\vec{v}_3 = \vec{v}_4.$$

How do you know that this system has, in fact, infinitely many solutions?

- (4) (a) Consider a linear system of three equations with three unknowns. We are told that the system has a unique solution. What does the reduced row-echelon form of the coefficient matrix of this system look like? Explain your answer.
 - (b) Consider a linear system of four equations with three unknowns. We are told that the system has a unique solution. What does the reduced row-echelon form of the coefficient matrix of this system look like? Explain your answer.
 - (c) If the rank of a 4×4 matrix is 4, what is rref(A)?
 - (d) If the rank of a 5×3 matrix is 3, what is rref(A)?

(5) Let
$$\vec{x} = \begin{bmatrix} 5\\ 3\\ -9 \end{bmatrix}$$
 and $\vec{y} = \begin{bmatrix} 2\\ 0\\ 1 \end{bmatrix}$.

- (a) Find a *diagonal* matrix A such that $A\vec{x} = \vec{y}$.
- (b) Find a matrix A of rank 1such that $A\vec{x} = \vec{y}$.
- (c) Find an *upper triangular* matrix A such that $A\vec{x} = \vec{y}$, where all the entries of A on and above the diagonal are nonzero.