

COLLEGE OF THE HOLY CROSS Department of Mathematics and Computer Science

MATH 244 Linear Algebra Spring 2025 Final Exam

Question	1	2	3	4	5	6	7	8	9	10	11	12	EC	Total
Points	10	10	10	10	10	10	10	10	10	10	10	10	10	100

Your name_

Duration of the Final Exam is 150 minutes. There are 12 problems. The first problem and the second problem are mandatory. From problems 3 - 12, only 8 problems will be graded. If you solve all Problems 3 - 12, you must cross out the two problems in the boxes above that must not be graded. If you solve all Problems 3 - 12 but do not cross out two problems, only the first ten problems from 3 - 12 will be graded. Show all your work for full credit. Books, notes etc. are prohibited. Calculators, cellphones, earphones, AirPods and cheat sheets are NOT permitted.

1. Consider the linear mapping $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$.

Determine whether the mapping is diagonalizable. If it is, find a basis (eigenbasis) of the appropriate vector space consisting of eigenvectors, and diagonalize A.

- 2. Determine whether the statements that follow are true or false. Give a reason or counterexample.
 - (a) If $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ and $\mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_m$ are any two bases of a subspace V of \mathbb{R}^{10} , then n must equal m.

(b) If A is a 5×6 matrix of rank 4, then the nullity of A is 1.

(c) The image of a 3×4 matrix is a subspace of \mathbb{R}^4 .

(d) There exists a 5×4 matrix whose image consists of all of \mathbb{R}^5 .

(e) If vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 are linearly independent, then vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 must be linearly independent as well.

(f) Vectors
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
, $\begin{bmatrix} 2\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 3\\2\\1 \end{bmatrix}$ form a basis of \mathbb{R}^3 .

(g) Matrix
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 is similar to $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$.

(h) If two nonzero vectors are linearly dependent, then each of them is a scalar multiple of the other.

(i) If a subspace V of \mathbb{R}^3 contains the standard vectors \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 , then V must be \mathbb{R}^3 .

(j) There exists a 2×2 matrix A such that im(A) = ker(A).

3. Write the matrix form of the following system, find the inverse of the coefficient matrix, and solve it.

$$x - 2y + 5z = 1$$
$$-3x + 4y + 7z = 5$$
$$6x + 5y - 4z = 2$$

4. (a) For which values of the scalar λ is the matrix $\begin{bmatrix} \lambda & 1 & 1 \\ 1 & \lambda & -1 \\ 1 & 1 & \lambda \end{bmatrix}$ invertible?

(b) Find a basis of the row space of the matrix. Also, find nullity(A). Mention any result/theorem used.

$$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 7 \end{bmatrix}$$

5. (a) Find the volume of the parallelepiped spanned by \vec{u} , \vec{v} , and \vec{w} in the following figure.

(b) Find the area of the triangle with vertices P = (1, 1, 5), Q = (3, 4, 3), and R = (1, 5, 7).

6. Suppose

$$U = \{ (x, y, x + y, x - y, 2x) \in \mathbb{R}^5 : x, y \in \mathbb{R} \}.$$

(a) Prove that U is a subspace of \mathbb{R}^5 .

(b) Find a basis for U.

(c) Find a subspace W of \mathbb{R}^5 such that $\mathbb{R}^5 = U \oplus W$. Show all your work.

7. (a) Determine if the given set of vectors is linearly independent. Mention any result/theorem used.

$$S = \{x^2 + x + 1, -x^2 + 2x, x^2 + 2, x^2 - x\} \text{ in } \mathcal{P}_2(\mathbb{R}).$$

(b) Is $\mathbf{v} = (1, 1, 0, 0) \in \operatorname{span}((1, 1, 1, 1), (1, -1, 1, 0), (0, 0, 0, 1))$?

8. (a) Find a basis of $\mathcal{P}_5(\mathbb{R})$ containing the linearly independent set $S = \{x^5 - 2x, x^4 + 3x^2, 6x^5 + 2x^3\}$.

(b) Find a basis of \mathbb{R}^3 which is contained in the spanning set $S = \{(1, 2, 1), (-1, 3, 1), (0, 5, 2), (1, 1, 1), (0, 4, 2)\}.$

9. (a) Show that $\mathbf{v}_1 = (1, 1, 1), \mathbf{v}_2 = (2, 3, 1), \mathbf{v}_3 = (4, 1, 5)$ is a basis of \mathbb{R}^3 .

(b) Suppose that we define a linear transformation $T: \mathbb{R}^3 \to \mathcal{P}(\mathbb{R})$ by setting

$$T(\mathbf{v}_1) = x^2 - 5, \ T(\mathbf{v}_2) = x^7 + 1, \ T(\mathbf{v}_3) = 11.$$

Find T((1, 2, 5)).

(c) Determine whether T is injective, surjective, both, or neither.

10. Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be given by

$$T(x, y, z) = (x + y + 2z, 2x + 2y + 4z, 2x + 3y + 5z).$$

Then T is a linear transformation.

(a) Let α be the standard basis of \mathbb{R}^3 . Compute $[T]^{\alpha}_{\alpha}$.

(b) Find Im(T).

(c) Find a basis for Im(T).

(d) Find a basis for Ker(T).

(e) Determine whether T is injective, surjective, both, or neither.

11. (a) For which values of constants a, b, and c is the following matrix diagonalizable?

[1	a	b
0	2	c
0	0	3

(b) Suppose there is an eigenbasis for a matrix A. What is the relationship between the algebraic multiplicities and dimensions of eigenspaces (geometric multiplicities) of its eigenvalues?

(c) Find all eigenvalues and eigenvectors of $A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. Is there an eigenbasis? Interpret your result geometrically.

12. Let
$$A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \\ 1 & 4 \end{bmatrix}$$
.

(a) Find an orthonormal basis for Im(A).

(b) Let
$$\mathbf{x} = \begin{bmatrix} 1\\2\\1\\5 \end{bmatrix}$$
. Find $\operatorname{proj}_{\operatorname{Im}(A)}(\mathbf{x})$.

(c) Find a basis for $\operatorname{Im}(A)^{\perp}$.

(d) Find a basis for $\operatorname{Ker}(A^T)$?

(e) Is $\operatorname{Im}(A)^{\perp} = \operatorname{Ker}(A^T)$?

EXTRA CREDIT PROBLEM

1. True/False.

$$\det \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} = 1.$$

2. For the matrix

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

describe the images and kernels of the matrices A, A^2 and A^3 geometrically.

WORKSHEET