- (1) For each of the following linear mappings:
 - Find all the eigenvalues, and
 - For each eigenvalue λ , find a basis of the eigenspace E_{λ} .

(a) $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$.

(b) $T: \mathcal{P}_3(\mathbb{R}) \to \mathcal{P}_3(\mathbb{R})$ defined by T(p(x)) = 2p'(x) + 3p(x)

(2) Determine whether the given linear mapping is diagonalizable. If it is, find a basis of the appropriate vector space consisting of eigenvectors. Such a basis is called an *eigenbasis*.

(a)
$$T : \mathbb{R}^2 \to \mathbb{R}^2$$
 defined by $A = \begin{bmatrix} 3 & 1 \\ -1 & 1 \end{bmatrix}$.
(b) $T : \mathbb{R}^3 \to \mathbb{R}^3$ defined by $A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 3 \\ 5 & 0 & 1 \end{bmatrix}$.

(3) Let
$$A = \begin{bmatrix} 1 & -1 & 3 \\ 0 & 1 & 0 \\ 0 & 4 & 1 \end{bmatrix}$$
. Find A^{-1} using the characteristic polynomial of A , $p(t) = \det(A - tI)$.