Due by 4pm on April 15. Do not forget to attach the honor code. Each problem is worth 10 points.

- 1. Give an example of each of the following, or argue that such a request is impossible.
 - (a) A Cauchy sequence that is not monotone.
 - (b) A Cauchy sequence with an unbounded subsequence.
 - (c) A divergent monotone sequence with a Cauchy subsequence.
 - (d) An unbounded sequence containing a subsequence that is Cauchy.
- 2. Prove the Alternating Series Test by showing that the sequence of partial sums is a Cauchy sequence.
- 3. Give another proof for the Alternating Series Test using the Nested Interval Property.
- 4. Prove the Root Test.
- 5. Determine whether or not the following series converge.

(a)
$$\sum_{k=1}^{\infty} \frac{2^{k^2}}{100^{100k}}$$
 (c) $\sum_{k=1}^{\infty} \frac{k^2}{3^k}$
(b) $\sum_{k=1}^{\infty} \left(\frac{k^4 + 25k^3}{2k^4 + 1}\right)^k$ (d) $\sum_{k=1}^{\infty} \frac{10^k}{(2k)!}$

Hint: Use the Root Test in (a) and (b), and the Ratio Test in (c) and (d).

- 6. Use the Cauchy Condensation Test to show that the series $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^p}$ converges if and only if p > 1.
- 7. Determine whether the series $\sum_{k=1}^{\infty} \frac{k^3}{k^4 + 1}$ converges or diverges.
- 8. Prove that if the series $\sum_{k=1}^{\infty} |a_k|$ converges, then $\sum_{k=1}^{\infty} |a_k|^2$ converges. Provide a counterexample to show the converse is false.
- 9. Prove that if $a_k \ge 0$ and $b_k \ge 0$ for all k, and both $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ converge, then $\sum_{k=1}^{\infty} a_k b_k$ converges.
- 10. (a) Prove that if $\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$, then $\lim_{n \to \infty} a_n = 0$. (b) Prove that if |r| < 1, then $\lim_{n \to \infty} n^p r^n = 0$ for any p.