Due by 5pm on Friday, December 1. Do not forget to attach the honor code. There are five problems.
(1) Show that the dual code of a cyclic code is cyclic.
(2) Find all the possible monic generators for each of the following ideals:
(a) $I=\left\langle 1+x+x^{3}\right\rangle \subset \mathbb{F}_{2}[x] /\left(x^{7}-1\right) ;$
(b) $I=\left\langle 1+x^{2}\right\rangle \subset \mathbb{F}_{3}[x] /\left(x^{4}-1\right)$.
(3) Determine whether the following polynomials are generator polynomials of cyclic codes of given lengths:
(a) $g(x)=1+x+x^{2}+x^{3}+x^{4}$ for a binary cyclic code of length 7 ;
(b) $g(x)=2+2 x^{2}+x^{3}$ for a ternary cyclic code of length 8 ;
(c) $g(x)=2+2 x+x^{3}$ for a ternary cyclic code of length 13 .
(4) Determine the smallest length for a binary cyclic code for which each of the following polynomials is the generator polynomial:
(a) $g(x)=1+x^{4}+x^{5}$;
(b) $g(x)=1+x+x^{2}+x^{4}+x^{6}$.
(5) Let $g(x)=1+x^{4}+x^{6}+x^{7}+x^{8} \in \mathbb{F}_{2}[x]$ be the generator polynomial of a binary [15, 7]-cyclic code C . Write down a generator matrix and a parity-check matrix for C. Construct a generator matrix of the form $\left(I_{7} \mid A\right)$.

