Due by 4 pm on March 15. Do not forget to attach the honor code. Each problem is worth 10 points.

1. Find the limit of the sequence $x_{n}=\frac{7 n-2}{4 n+5}$. Use the definition of convergence to prove your assertion.
2. Find the limit of the sequence $y_{n}=\frac{3 \sqrt{n}}{\sqrt{n}+5}$. Use the definition of convergence to prove your assertion. $\lim y_{n}=3 .\left|y_{n}-3\right|=\frac{15}{\sqrt{n}+5}<\frac{15}{\sqrt{n}}<\epsilon$, which implies $n>\left(\frac{15}{\epsilon}\right)^{2}$. Let $\epsilon>0$ be arbitrary. Choose $N \in \mathbb{N}$ such that $N>\left(\frac{15}{\epsilon}\right)^{2}$. Then for all $n \geq N$, we have \ldots
3. Find the limit of the sequence $z_{n}=2+(3 / 5)^{n}$. Use the definition of convergence to prove your assertion.
4. Find the limit of the sequence $x_{n}=\frac{(1+2 n)^{2}}{5+3 n+3 n^{2}}$. Use the definition of convergence to prove your assertion. $\lim x_{n}=\frac{4}{3} .\left|x_{n}-\frac{4}{3}\right|=\frac{17}{3\left(3 n^{2}+3 n+5\right)}<\frac{17}{9 n}<\epsilon$, which implies $n>\frac{17}{9 \epsilon}$. Let $\epsilon>0$ be arbitrary. Choose $N \in \mathbb{N}$ such that $N>\frac{17}{9 \epsilon}$. Then for all $n \geq N$, we have ...
5. (a) Use the definition of convergence to prove that the sequence $z_{n}=\sqrt{n}$ does not converge.
(b) Use the definition of convergence to prove that the sequence $y_{n}=(-1)^{n}$ does not converge.
6. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are bounded sequences in \mathbb{R}, and $c \in \mathbb{R}$. Prove the following:
(a) The sequence $\left(a_{n}+b_{n}\right)$ is bounded.
(b) The sequence $\left(a_{n}-b_{n}\right)$ is bounded.
(c) The sequence $\left(a_{n} b_{n}\right)$ is bounded.
(d) The sequence $\left(c a_{n}\right)$ is bounded.
7. Show that the sequence (a_{n}) defined by

$$
a_{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

is unbounded.
Show that $a_{2 n}-a_{n}>\frac{1}{2}$ for all $n \in \mathbb{N}$.
8. Show that the sequence (a_{n}) defined by

$$
a_{n}=1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}
$$

is bounded above by 2 .
Prove that $n!\geq 2^{n-1}$ for all n, and use that result and the result in Problem 7 .
9. Show that the sequence (a_{n}) defined by

$$
a_{n}=\left(1+\frac{1}{n}\right)^{n}
$$

is bounded above by 3 .
Use the binomial formula and show that each term in the formula is less than or equal to $\frac{1}{k!}$, where k is the index of the summation.
10. (a) Show that if $\lim x_{n}=2$, then there is some $N \in \mathbb{N}$ such that $x_{n}<2.03$ for all $n \geq N$. (b) True or False (explain): If $\left(a_{n}\right)$ and $\left(a_{n} b_{n}\right)$ are bounded, then $\left(b_{n}\right)$ is also bounded.

