Due by 5pm on Friday, November 17. Do not forget to attach the honor code. There are five problems.
(1) For each of the following sets S and corresponding finite fields \mathbb{F}_{q}, find the \mathbb{F}_{q}-linear span $\langle S\rangle$ and its orthogonal complement S^{\perp} :
(a) $S=\{101,111,010\}, q=2$
(b) $S=\{1020,0201,2001\}, q=3$
(c) $S=\{00101,10001,11011\}, q=2$
(2) Determine which of the following codes are linear over \mathbb{F}_{q} :
(a) $q=2$ and $C=\{1101,1110,1011,1111\}$,
(b) $q=3$ and $C=\{0000,1001,0110,2002,1111,0220,1221,2112,2222\}$,
(c) $q=2$ and $C=\{00000,11110,01111,10001\}$.
(3) Find a generator matrix and a parity-check matrix for the linear code generated by each of the following sets, and give the parameters $[n, k, d]$ for each of these codes:
(a) $q=2, S=\{1000,0110,0010,0001,1001\}$,
(b) $q=3, S=\{110000,011000,001100,000110,000011\}$,
(c) $q=2, S=\{10101010,11001100,11110000,01100110,00111100\}$.
(4) Find the distance of the binary linear code C with each of the following given parity-check matrices:
(a) $H=\left(\begin{array}{l}0111000 \\ 1110100 \\ 1100010 \\ 1010001\end{array}\right)$
(b) $H=\left(\begin{array}{l}1101000 \\ 1010100 \\ 0110010 \\ 1100001\end{array}\right)$
(5) Let C be the binary linear code with parity-check matrix

$$
H=\left(\begin{array}{l}
110100 \\
101010 \\
011001
\end{array}\right)
$$

Write down a generator matrix for C and list all the codewords in C. Decode the following words:
(a) 110110
(b) 011011
(c) 101010

