## Due by 4pm on March 1. Do not forget to attach the honor code. Each problem is worth 10 points.

1. Prove that every subset of $\mathbb{N}$ is countable.
2. Prove that every infinite set contains a countably infinite subset.
3. Explain why the set $A$ is countable if and only if $\operatorname{card}(A) \leq \operatorname{card}(\mathbb{N})$.
4. Let $S$ be the set of all infinite sequences of zeros and ones. For example, $x=(0,1,0,1,0,1, \ldots)$ and $y=(0,1,0,1,1,0,1,1,1, \ldots)$ are elements of $S$. Prove that $S \sim \mathcal{P}(\mathbb{N})$.

5 . Let $B$ be the set of all infinite subsets of $\mathbb{N}$. Prove that $B$ is uncountable.
6. Let $A$ be any nonempty set and let $B$ be the set of all functions $f: A \rightarrow\{0,1\}$. Prove that $B \sim \mathcal{P}(A)$.

The Schröder-Bernstein Theorem states that if there exist injections $f: A \rightarrow B$ and $g: B \rightarrow A$ (or equivalently if there exist surjections $f: A \rightarrow B$ and $g: B \rightarrow A$ ) then $A \sim B$.

Use the Schröeder-Bernstein Theorem to prove the following.
7. $\mathcal{P}(\mathbb{N}) \sim(0,1)$.
8. $(0,1) \times(0,1) \sim(0,1)$.
9. $[0,1] \sim[0,1)$.
10. $[0,1] \sim(0,1)$.

