Due by 4pm on March 1. Do not forget to attach the honor code. Each problem is worth 10 points.

- 1. Prove that every subset of \mathbb{N} is countable.
- 2. Prove that every infinite set contains a countably infinite subset.
- 3. Explain why the set A is countable if and only if $\operatorname{card}(A) \leq \operatorname{card}(\mathbb{N})$.
- 4. Let S be the set of all infinite sequences of zeros and ones. For example, x = (0, 1, 0, 1, 0, 1, ...) and y = (0, 1, 0, 1, 1, 0, 1, 1, ...) are elements of S. Prove that $S \sim \mathcal{P}(\mathbb{N})$.
- 5. Let B be the set of all infinite subsets of \mathbb{N} . Prove that B is uncountable.
- 6. Let A be any nonempty set and let B be the set of all functions $f: A \to \{0, 1\}$. Prove that $B \sim \mathcal{P}(A)$.

The Schröder-Bernstein Theorem states that if there exist injections $f : A \to B$ and $g : B \to A$ (or equivalently if there exist surjections $f : A \to B$ and $g : B \to A$) then $A \sim B$.

Use the Schröeder-Bernstein Theorem to prove the following.

- 7. $\mathcal{P}(\mathbb{N}) \sim (0,1).$
- 8. $(0,1) \times (0,1) \sim (0,1)$.
- 9. $[0,1] \sim [0,1)$.
- 10. $[0,1] \sim (0,1)$.