MATH 361 Real Analysis

Due by 4pm on February 16. Do not forget to attach the honor code.

- 1. (5 points each) True or False. Provide a proof or counterexample for each assertion.
 - (a) If $\inf(A) < x < \sup(A)$, then $x \in A$.
 - (b) If $x > \sup(A)$, then $x \notin A$.
 - (c) If $x < \sup(A)$, then there exists $a \in A$ such that x < a.
 - (d) If a < b for every $a \in A$ and every $b \in B$, then $\sup(A) < \inf(B)$.
- 2. (15 points) Let $A = \{\frac{2n+1}{n+3} : n \in \mathbb{N}\}$. Find $\inf(A)$ and $\sup(A)$, and prove your assertions.
- 3. (10 points) Suppose A and B are nonempty subsets of \mathbb{R} that are bounded above and $A \subseteq B$. Show that

$$\sup(A) \le \sup(B).$$

- 4. Let $B = \{x \in \mathbb{R} : x(x-1)(x-2) < 10\}.$
 - (a) (10 points) Prove that B is nonempty and bounded above.
 - (b) (5 points) By part (a) and the completeness axiom, $\sup(B)$ exists. Estimate $\sup(B)$ to one decimal place.
- 5. (10 points) Prove that if A has a maximum element, then $\sup(A) = \max(A)$.
- 6. (10 points each)
 - (a) Let A and B be nonempty subsets of \mathbb{R} that are bounded above, and write

$$A + B = \{a + b : a \in A, b \in B\}.$$

Prove that A + B is bounded above and that $\sup (A + B) = \sup A + \sup B$.

(b) Let A and B be nonempty sets of positive real numbers that are bounded above, and write

$$AB = \{ab : a \in A, b \in B\}.$$

Prove that AB is bounded above and that $\sup (AB) = (\sup A)(\sup B)$.

7. (10 points) Let A be a nonempty subset of \mathbb{R} that is bounded below. Prove that $\inf(A)$ exists. **Hint:** Let $B = \{-a : a \in A\}$ and show that B is bounded above.