Due by 5pm on October 2. Do not forget to attach the honor code. Each problem is worth 10 points.

- (1) Let $f(x) = (2 + 2x^2)(2 + x^2 + x^3)^2(-1 + x^4) \in \mathbb{F}_3[x]$ and $g(x) = (1 + x^2)(-2 + 2x^2)(2 + x^2 + x^3) \in \mathbb{F}_3[x]$. Determine $\gcd(f(x), g(x))$ and $\operatorname{lcm}(f(x), g(x))$.
- (2) Find the order of the elements α , α^3 , $\alpha + 1$ and $\alpha^3 + 1$ in \mathbb{F}_{16} , where α is a root of $1 + x + x^4$.
- (3) (a) Let α be a primitive element of \mathbb{F}_q . Show that α^i is also a primitive element if and only if gcd(i, q-1) = 1.
 - (b) Determine the number of primitive elements in the following fields: \mathbb{F}_{19} , \mathbb{F}_{25} and \mathbb{F}_{32} .
 - (c) Determine all the primitive elements of the following fields: \mathbb{F}_7 , \mathbb{F}_8 , \mathbb{F}_9
- (4) Let α be a root of $1 + x^3 + x^4 \in \mathbb{F}_2[x]$.
 - (a) List all the cyclotomic cosets of 2 modulo 15.
 - (b) Find the minimal polynomial of $\alpha^i \in \mathbb{F}_{16}$, for all $1 \leq i \leq 14$.
 - (c) Find all the irreducible polynomials of degree 4 over \mathbb{F}_2 .

Hint: Each monic irreducible polynomial of $\mathbb{F}_q[x]$ of degree *m* is the minimal polynomial of some element of \mathbb{F}_{q^m} with respect to \mathbb{F}_q .

- (5) (a) Find all the cyclotomic cosets of 2 modulo 31.
 (b) Find the minimal polynomials of α, α⁴ and α⁵, where α is a root of 1 + x² + x⁵ ∈ F₂[x].
- (6) (a) Factorize the polynomial x³¹ 1 over F₂.
 (b) Factorize the polynomial x¹² 1 over F₅.