Due by 5pm on October 2. Do not forget to attach the honor code. Each problem is worth 10 points.
(1) Let $f(x)=\left(2+2 x^{2}\right)\left(2+x^{2}+x^{3}\right)^{2}\left(-1+x^{4}\right) \in \mathbb{F}_{3}[x]$ and $g(x)=\left(1+x^{2}\right)\left(-2+2 x^{2}\right)\left(2+x^{2}+x^{3}\right) \in \mathbb{F}_{3}[x]$.

Determine $\operatorname{gcd}(f(x), g(x))$ and $\operatorname{lcm}(f(x), g(x))$.
(2) Find the order of the elements $\alpha, \alpha^{3}, \alpha+1$ and $\alpha^{3}+1$ in \mathbb{F}_{16}, where α is a root of $1+x+x^{4}$.
(3) (a) Let α be a primitive element of \mathbb{F}_{q}. Show that α^{i} is also a primitive element if and only if $\operatorname{gcd}(i, q-1)=1$.
(b) Determine the number of primitive elements in the following fields: $\mathbb{F}_{19}, \mathbb{F}_{25}$ and \mathbb{F}_{32}.
(c) Determine all the primitive elements of the following fields: $\mathbb{F}_{7}, \mathbb{F}_{8}, \mathbb{F}_{9}$
(4) Let α be a root of $1+x^{3}+x^{4} \in \mathbb{F}_{2}[x]$.
(a) List all the cyclotomic cosets of 2 modulo 15.
(b) Find the minimal polynomial of $\alpha^{i} \in \mathbb{F}_{16}$, for all $1 \leq i \leq 14$.
(c) Find all the irreducible polynomials of degree 4 over \mathbb{F}_{2}.

Hint: Each monic irreducible polynomial of $\mathbb{F}_{q}[x]$ of degree m is the minimal polynomial of some element of $\mathbb{F}_{q^{m}}$ with respect to \mathbb{F}_{q}.
(5) (a) Find all the cyclotomic cosets of 2 modulo 31.
(b) Find the minimal polynomials of α, α^{4} and α^{5}, where α is a root of $1+x^{2}+x^{5} \in \mathbb{F}_{2}[x]$.
(6) (a) Factorize the polynomial $x^{31}-1$ over \mathbb{F}_{2}.
(b) Factorize the polynomial $x^{12}-1$ over \mathbb{F}_{5}.

