Due by 4pm on February 9. Do not forget to attach the honor code.

1. (5 points each) Let $a, b, c \in \mathbb{R}$. Prove the following:
(a) $|a b|=|a||b|$
(b) $|a+b| \leq|a|+|b|$
(c) $|a+b|=|a|+|b|$ if and only if $a b \geq 0$.
(d) If $a<b$ for every $b>c$, then $a \leq c$.
2. (10 points) Prove that for every positive integer n,

$$
1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\cdots+\frac{1}{\sqrt{n}}>2(\sqrt{n+1}-1)
$$

3. (15 points) The distance between two points x and y in \mathbb{R} is $d(x, y)=|y-x|$. In class, we showed that $d(x, y)$ satisfies the following:
(i) $d(x, y) \geq 0$ for all $x, y \in \mathbb{R}$ and $d(x, y)=0$ if and only if $x=y$
(ii) $d(x, y)=d(y, x)$ for all $x, y \in \mathbb{R}$
(iii) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in \mathbb{R}$

If X is any nonempty set, a function $d: X \times X \mapsto \mathbb{R}$ with the properties (i) - (iii) is called a metric (or 'distance function') on X. Verify that the function $D: \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ defined by the formula

$$
D(a, b)=\frac{|a-b|}{1+|a-b|}
$$

is also a metric on \mathbb{R}.
4. Let $x, y \in \mathbb{R}$. Use the axioms of the real numbers to prove the following.
(a) (10 points) If $2<x<5$, then $\frac{7}{6}<\frac{2+x}{1+x}<\frac{4}{3}$. (Hint: First rewrite $\frac{2+x}{1+x}$ so that x appears only once.)
(b) (10 points) $2 x y \leq x^{2}+y^{2}$. (Hint: $(x-y)^{2} \geq 0$.)
5. (20 points) Let $A=[2,5)$. Find $\min (A), \max (A), \inf (A)$ and $\sup (A)$. Prove your assertions.
6. (5 points each) Prove that there exists a real number β such that $\beta^{3}=361$, as follows.
(a) Let $S=\left\{x \in \mathbb{R}: x^{3}<361\right\}$. Prove S is nonempty and bounded above, and therefore has a least upper bound β.
(b) Show that if $\beta^{3}<361$, then there exists $n \in \mathbb{N}$ such that $\left(\beta+\frac{1}{n}\right)^{3}<361$. Explain why this is a contradiction.
(c) Show that if $\beta^{3}>361$, then there exists $n \in \mathbb{N}$ such that $\left(\beta-\frac{1}{n}\right)^{3}>361$. Explain why this is a contradiction.

