Due by 4pm on February 9. Do not forget to attach the honor code.

- 1. (5 points each) Let $a, b, c \in \mathbb{R}$. Prove the following:
 - (a) |ab| = |a||b|
 - (b) $|a+b| \le |a|+|b|$
 - (c) |a+b| = |a| + |b| if and only if $ab \ge 0$.
 - (d) If a < b for every b > c, then $a \le c$.
- 2. (10 points) Prove that for every positive integer n,

$$1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} > 2(\sqrt{n+1} - 1).$$

- 3. (15 points) The **distance** between two points x and y in \mathbb{R} is d(x, y) = |y x|. In class, we showed that d(x, y) satisfies the following:
 - (i) $d(x,y) \ge 0$ for all $x, y \in \mathbb{R}$ and d(x,y) = 0 if and only if x = y
 - (ii) d(x,y) = d(y,x) for all $x, y \in \mathbb{R}$
 - (iii) $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in \mathbb{R}$

If X is any nonempty set, a function $d : X \times X \mapsto \mathbb{R}$ with the properties (i) - (iii) is called a **metric** (or 'distance function') on X. Verify that the function $D : \mathbb{R} \times \mathbb{R} \mapsto \mathbb{R}$ defined by the formula

$$D(a,b) = \frac{|a-b|}{1+|a-b|}$$

is also a metric on \mathbb{R} .

- 4. Let $x, y \in \mathbb{R}$. Use the axioms of the real numbers to prove the following.
 - (a) (10 points) If 2 < x < 5, then $\frac{7}{6} < \frac{2+x}{1+x} < \frac{4}{3}$. (Hint: First rewrite $\frac{2+x}{1+x}$ so that x appears only once.) (b) (10 points) $2xy \le x^2 + y^2$. (Hint: $(x - y)^2 \ge 0$.)
- 5. (20 points) Let A = [2, 5). Find min(A), max(A), inf(A) and sup(A). Prove your assertions.
- 6. (5 points each) Prove that there exists a real number β such that $\beta^3 = 361$, as follows.
 - (a) Let $S = \{x \in \mathbb{R} : x^3 < 361\}$. Prove S is nonempty and bounded above, and therefore has a least upper bound β .
 - (b) Show that if $\beta^3 < 361$, then there exists $n \in \mathbb{N}$ such that $(\beta + \frac{1}{n})^3 < 361$. Explain why this is a contradiction.
 - (c) Show that if $\beta^3 > 361$, then there exists $n \in \mathbb{N}$ such that $(\beta \frac{1}{n})^3 > 361$. Explain why this is a contradiction.