Due by 4 pm on February 2. Do not forget to attach the honor code.
(1) (10 points) If r is rational $(r \neq 0)$ and x is irrational, prove that $r+x$ and $r x$ are irrational.
(2) (5 points each)
(a) Prove that $\sqrt{3}$ is irrational. In other words, show that there is no rational p such that $p^{2}=3$.
(b) Prove that there is no rational number whose square is 12 .
(3) (10 points) Let X be a set. Then X^{c} denotes the complement of X. Show that $(A \cap B)^{c}=A^{c} \cup B^{c}$.
(4) (5 points each) Let $a, b, c, d \in \mathbb{R}$. Prove the following:
(a) $-(-a)=a$.
(b) If $a \neq 0$, then $\left(a^{-1}\right)^{-1}=a$.
(c) If $a \neq 0$ and $b \neq 0$, then $(a \cdot b)^{-1}=b^{-1} \cdot a^{-1}$.
(d) If $a+b=a+c$, then $b=c$.
(e) If $a \neq 0$ and $a \cdot b=a \cdot c$ then $b=c$.
(f) $(-a) \cdot b=-(a \cdot b)$.
(g) If b and d are nonzero, then $\frac{a}{b}+\frac{c}{d}=\frac{a \cdot d+c \cdot b}{b \cdot d}$
(h) If $a>b>0$ then $a^{2}>b^{2}$.
(i) $a<0$ if and only if $-a>0$.
(j) If $a \neq 0$, then $a^{2}>0$.
(k) If $a>b$ and $c<0$, then $a \cdot c<b \cdot c$.
(l) If $a>b>0$, then $b^{-1}>a^{-1}>0$.
(5) (10 points) Prove that if $|x-y|<\epsilon$ for every $\epsilon>0$, then $x=y$.

