Due by 4pm on February 2. Do not forget to attach the honor code.

- (1) (10 points) If r is rational $(r \neq 0)$ and x is irrational, prove that r + x and rx are irrational.
- (2) (5 points each)
 - (a) Prove that $\sqrt{3}$ is irrational. In other words, show that there is no rational p such that $p^2 = 3$.
 - (b) Prove that there is no rational number whose square is 12.
- (3) (10 points) Let X be a set. Then X^c denotes the complement of X. Show that $(A \cap B)^c = A^c \cup B^c$.
- (4) (5 points each) Let $a, b, c, d \in \mathbb{R}$. Prove the following:
 - (a) -(-a) = a. (b) If $a \neq 0$, then $(a^{-1})^{-1} = a$. (c) If $a \neq 0$ and $b \neq 0$, then $(a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$. (d) If a + b = a + c, then b = c. (e) If $a \neq 0$ and $a \cdot b = a \cdot c$ then b = c. (f) $(-a) \cdot b = -(a \cdot b)$. (g) If b and d are nonzero, then $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + c \cdot b}{b \cdot d}$ (h) If a > b > 0 then $a^2 > b^2$. (i) a < 0 if and only if -a > 0. (j) If $a \neq 0$, then $a^2 > 0$. (k) If a > b > 0, then $a^{-1} > a^{-1} > 0$.
- (5) (10 points) Prove that if $|x y| < \epsilon$ for every $\epsilon > 0$, then x = y.