Due by 4 pm on May 3. Do not forget to attach the honor code. Each problem is worth 10 points.

1. Let $f: A \rightarrow \mathbb{R}$ and let c be a limit point of A. If $\lim _{x \rightarrow c} f(x)$ exists, show that it is unique.
2. Prove the Order Limit Theorem for Functional Limits: Let f and g be functions defined on a set A and assume $f(x) \leq g(x)$ for all $x \in A$. Further, let c be a limit point of A and assume that the limits for f and g exist at c. Show that

$$
\lim _{x \rightarrow c} f(x) \leq \lim _{x \rightarrow c} g(x)
$$

3. Let $f: A \rightarrow \mathbb{R}$ and $g: A \rightarrow \mathbb{R}$ and c be a limit point of A. Suppose that $\lim _{x \rightarrow c} f(x)$ exists and that $\lim _{x \rightarrow c} g(x)$ does not exist.
(a) If $k \in \mathbb{R}$ is not 0 , show that $\lim _{x \rightarrow c} k g(x)$ does not exist.
(b) Show that $\lim _{x \rightarrow c}[f(x)+g(x)]$ does not exist.
(c) Must it be the case that $\lim _{x \rightarrow c}[f(x) g(x)]$ does not exist?
4. Use the Sequential Definition of a Functional Limit (Theorem 4 in Note 14) to prove the following limit statements.
(a) $\lim _{x \rightarrow 2} 3 x+1=7$
(c) $\lim _{x \rightarrow 3} 1 / x=1 / 3$
(b) $\lim _{x \rightarrow 2} x^{2}=4$
(d) $\lim _{x \rightarrow 2} x^{2}+x-1=5$
5. (a) Give a proper definition in the style of $\epsilon-\delta$ definition for the right-hand and left-hand limit statements:

$$
\lim _{x \rightarrow c^{+}} f(x)=L \quad \text { and } \quad \lim _{x \rightarrow c^{-}} g(x)=M
$$

(b) Prove that $\lim _{x \rightarrow c} f(x)=L$ if and only if both the right and left-hand limits equal L.
6. For each stated limit, find the largest possible δ-neighborhood that is a proper response to the given ϵ challenge.
(a) $\lim _{x \rightarrow 4} \sqrt{x}=2$, where $\epsilon=1$.
(b) $\lim _{x \rightarrow 3} 5 x-6=9$, where $\epsilon=1$.
7. Let $f: A \rightarrow \mathbb{R}$ and let c be a limit point of A.
(a) If $\lim _{x \rightarrow c} f(x)=L$, show that $\lim _{x \rightarrow c}|f(x)|=|L|$.
(b) Show that it is possible for $\lim _{x \rightarrow c}|f(x)|$ to exist even if $\lim _{x \rightarrow c} f(x)$ does not exist.
8. Use the divergence criteria to supply a proof for each of the following.
(a) The function $f(x)=|x| / x$ does not have a limit at $x=0$.
(b) The function $f(x)=(x-1) /(x-3)$ does not have a limit at $x=3$.
(c) The function $f(x)=1 /\left(x^{4}+x^{2}\right)$ diverges to infinity at $x=0$.
9. Let $f(x)=\left\{\begin{array}{cl}x \sin \left(\frac{1}{x}\right) & x \neq 0 \\ 0 & x=0\end{array}\right.$.

Use the Sequential Definition of a Functional Limit to prove that f is continuous at $x=0$.
10. Let $f(x)=\left\{\begin{array}{cl}\frac{x^{2}-x-2}{x-2} & x \neq 2 \\ 1 & x=2\end{array}\right.$.

Prove that f is discontinuous at $x=2$.

