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Abstract

We explore the mathematical theory of knots through the lens of algebraic structures

known as kei and quandles. We begin by introducing classical knot invariants and

then study the fundamental kei of a knot as a tool for distinguishing knot types.

We generalize this approach using various kinds of quandles, including Alexander and

dihedral quandles, and investigate their associated polynomial invariants. We also

examine the connection between quandles and group theory, as well as their algebraic

representations in quandle rings. Moreover, we analyze idempotent elements in quandle

rings over finite fields, providing both general results and specific examples.
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1. Introduction

Knot theory is a branch of topology concerned with the study of closed, non-self-

intersecting curves embedded in three-dimensional space. Its mathematical develop-

ment began in the 19th century, initially inspired by physical theories. In 1867, Lord

Kelvin proposed the vortex atom theory, which viewed atoms as knotted tubes of ether.

This hypothesis led Peter Guthrie Tait to produce some of the earliest knot tables, sys-

tematically classifying knots by crossing number. Although Kelvin’s theory was later

discredited, Tait’s classification laid the foundation for modern knot theory.

Earlier contributions also came from Carl Friedrich Gauss, who defined the linking

number to measure the entanglement between two curves. Johann Benedict Listing, a

student of Gauss, worked on related topological concepts and introduced early termi-

nology relevant to knots.

A major formal advancement occurred in the 1920s with Kurt Reidemeister, who

introduced the three Reidemeister moves. These moves gave a rigorous framework

for determining whether two knot diagrams represent the same knot. Subsequently,

knot invariants were developed to distinguish knots algebraically. J. W. Alexander

introduced the Alexander polynomial in 1928, and in 1984, Vaughan Jones discovered

the Jones polynomial, which revealed unexpected connections between knot theory

and statistical mechanics. This discovery spurred further development of polynomial

invariants and established new links between topology and quantum field theory.

In addition to its mathematical significance, knot theory has practical applications.

In biology, it models the knotting of DNA molecules; in chemistry, it aids in the

synthesis of molecular knots; and in physics, it contributes to the understanding of

topological quantum field theories and quantum computing.

Modern knot theory integrates algebraic methods such as quandles, knot groups, and

braid groups, enhancing our ability to study knot equivalence and classification. These

tools not only deepen the theoretical framework but also connect knot theory with
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other areas of mathematics such as group theory, representation theory, and category

theory.

A quandle is a non-empty set with a binary operation which satisfies three axioms.

The three axioms of a quandle algebraically encode the three Reidemeister moves in

knot theory. Quandles in general are non-associative algebraic structures introduced

independently in the 1980s by Joyce [Joyce (1982)] and Matveev [Matveev (1982)] with

the purpose of constructing knot invariants. In this thesis, we explore different types of

quandles and their algebraic properties, and explain how to use quandles to distinguish

different knots. Quandles have been investigated from an algebraic point of view by

many because of their connection to Lie algebras, Hopf algebras, quasigroups and

Moufang loops, Frobenius algebras and Yang-Baxter equation, ring theory, etc. We

refer the reader to [Elhamdadi and Nelson(2015)], which is an excellent book written

on the theory of quandles, and [Macquarrie(2011)] for more details about quandles.

In 2019, Bardakov, Passi, and Singh introduced quandle rings and rack rings analo-

gous to group rings for groups [BPS(2019)]. Since then, several authors have studied

zero divisors, idempotents and other ring theoretic properties in quandle rings. We refer

the reader to [BPS(2019), Bardakov, Passi, and Singh(2022), Elhamdadi et al.(2019),

Elhamdadi et al.(2022), Elhamdadi and Swain(2024)] for more details about quandle

rings.

The following is the organization of the thesis.

In Section 2, we begin by introducing the mathematical definition of knots. The

formal study of knots was motivated by 19th-century physics, particularly Lord Kelvin’s

vortex atom theory. One of the earliest mathematical approaches came from Carl

Friedrich Gauss, who defined the linking number. We explore how knots are considered

equivalent under ambient isotopy, and we present classical knot invariants, such as the

crossing number and tricolorability, which are used to distinguish between different

knots. These invariants were systematized by Peter Guthrie Tait, who compiled the

first tables of knots.
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In Section 3, we proceed by studying kei, or involutive quandles, which were intro-

duced by Mituhisa Takasaki in 1942. Kei are algebraic structures defined by three

axioms: idempotency, involutivity, and right self-distributivity. We construct the fun-

damental kei of a knot and use it as a knot invariant. We also define kei homomorphisms

and the kei counting invariant, which counts the number of homomorphisms from a

knot’s fundamental kei into a fixed finite kei.

In Section 4, we examine several types of quandles: Latin quandles, dihedral quan-

dles, and Alexander quandles. We discuss their construction, algebraic properties, and

how they are used to define colorings of knot diagrams. We also study two major

polynomial invariants: the Alexander polynomial and the quandle polynomial.

In Section 5, we explore the algebraic connections between quandles and groups.

We study how quandles can generate groups via their column structures and examine

the fundamental group of the knot complement, a concept first formulated by Max

Dehn and further developed by Emil Artin. We also review braid groups, introduced

by Artin in the 1920s, which represent knots as closures of braids. Additionally, we

define quasigroups, generalizing group-like operations, and describe their intersection

with quandle theory.

In Section 6, we talk about racks as algebraic structures that satisfy right self-

distributivity without requiring idempotency. The concept of racks was first formally

introduced by John Conway and Gavin Wraith in the 1950s, and later independently

studied by David Joyce in the 1980s as a generalization of group conjugation operations.

In this section, we explore the algebraic structure of racks and introduce the rack

polynomial, which was developed to distinguish finite racks through combinatorial

data.

In Section 7, we then study shelves, which are sets equipped with a binary operation

that satisfies only the self-distributive property. This minimal structure first appeared

implicitly in the work of Richard Laver during his study of set theory and large cardinals

in the 1990s. We provide examples of shelves and define the shelf polynomial, a recent
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invariant designed to capture structural features specific to these non-idempotent self-

distributive systems.

In Section 8, we investigate quandle rings and rack rings. Quanlde rings were first

studied mainly for their algebraic properties, but they have garnered a lot of attention

recently due to their applications in knot theory. In [Elhamdadi and Swain(2024)],

the authors showed that the idempotents in quandle rings can be used to construct

stronger knot invariants.

In Section 9, we investigate idempotent elements in quandle rings over Zp. We begin

Section 9 with the case where |Q| = 3. We generate systems of equations for the

coefficients of idempotents and solve them using Gröbner basis.

In Section 10, we find formulas for the number of idempotents in quandle rings Zp[Q],

where the order of quandle is 3 or 5 and p is a prime number.

In Section 11, we present a generalization of our technique used in Section 9 to

quandle rings where the quandle is a connected quandle of order 5. However, due to

computational complexity, we can only generalize the patterns of connected quandles

of order up to 5.

To the best of our knowledge, the results in Sections 9, 10 and 11 have not appeared

in the literature.

The appendix contains essential background material on groups and rings. These

summaries are intended to support the algebraic concepts discussed throughout the

thesis and provide the reader with a clear reference for key definitions and theorems.

Throughout the thesis, we denote a quandle by X or Q.
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2. Knots

2.1. What is a Knot?

Definition 2.1. A knot is a simple closed curve. Simple means it doesn’t intersect

itself. Closed means it has no loose ends.

Definition 2.2. A knot diagram is a two-dimensional projection of a three-dimensional

knot. Over and under crossings are indicated by small gaps in the strands to show which

strand is on top.

Definition 2.3. A knot is called tame if it has a knot diagram with finite number of

crossings. A knot is called wild if every projection of it has infinitely many crossings.

In this thesis, we only consider tame knots.

Example 2.4. Trefoil Knot is the simplest nontrivial knot. It has a crossing number

of three, meaning the minimum number of crossings in any projection of the knot is

three.

Figure 1. The knot di-
agram of trefoil Knot.

Example 2.5. Figure-Eight Knot has a crossing number of four and is the simplest

knot with an even number of crossings.
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Figure 2. The knot di-
agram of figure-eight
Knot.

Definition 2.6. In an oriented knot diagram, each crossing can be classified as either

a positive crossing or a negative crossing, depending on the orientation of the strands.

• A crossing is called positive if the under strand rotates clockwise to reach the

over strand.

• A crossing is called negative if the under strand rotates counterclockwise to

reach the over strand.

2.2. Knot Invariants.

Definition 2.7. A knot invariant is a function f : K → X from the set of all knot

diagrams to a set X such that for each Reidemeister move, we have

f(K1) = f(K2)

where K1 is the knot diagram before the move and K2 is the same diagram after the

move. If f is a knot invariant, then any two diagrams related by Reidemeister moves

must give the same value when we evaluate f .
6



2.2.1. Fox Tricoloring. Fox Tricoloring is a knot invariant which was introduced by

Ralph Fox in the 1950s.

A tricoloring of a knot diagram is a choice of color for each arc in the diagram from

a set of three colors. A tricoloring is valid if at every crossing we either have all three

colors the same or all three colors different.

A valid tricoloring is nontrivial if it uses all three colors.

Example 2.8. The trefoil knot is tricolorable.

Example 2.9. The figure-8 knot is not tricolorable. This shows that the figure-8 knot

is a different knot.
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2.2.2. Jones Polynomial.

Definition 2.10. The bracket polynomial, ⟨L⟩ of a link L is defined recursively using

the following rules:

(i) < O > = 1, we denote the bracket polynomial of trivial knot is 1.

(ii)

(iii) For a disjoint union of a loop and a link L:⟨L ∪⃝⟩ = δ ⟨L⟩, where δ = −A2 −

A−2.

The Jones polynomial is a polynomial invariant of a knot or link, discovered by Vaughan

Jones in 1984. It can be defined using the bracket polynomial, also known as the

Kauffman bracket polynomial, with an additional normalization factor.

Definition 2.11. The Jones polynomial of a link L s given by:

VL(t) = (−A3)−w(L)⟨L⟩
∣∣
A=t−1/4 .

Here L represents a specific knot or link. It is the object for which we are calculating

the Jones polynomial.

⟨L⟩ denotes the bracket polynomial (also called the Kauffman bracket) of the knot

or link L. This is a key polynomial invariant that encodes information about the knot

or link, and it is computed through a recursive process based on the crossing structure

of the knot or link.

After we get the bracket polynomial. We can get the X polynomial of

XL(A) = (−A3)−w(L)⟨L⟩

Finally, we replace A by t−1/4 translates theX polynomial into the Jones polynomial.

Here we give a few examples on how to compute the Jones polynomial of a given

knot.
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Example 2.12. We compute the Jones polynomial of the knot 51.

First we compute the bracket polynomial of the knot 51.

⟨L⟩ = A3
(
−A4 − A−4

)
+ A

(
−A−3

)2
+
(
−A−3

)3
+ A−1

(
−A−3

)4
− A7 − A−1 + A−5 +

(
−A−9

)
+ A−13

Next we compute the X polynomial of the knot 51.(
−A−3

)w(L) ⟨L⟩ =
(
−A−3

)5 · (−A7 − A−1 + A−5 +
(
−A−9

)
+ A−13

)
= A−8 + A−16 − A−20 + A−24 − A−28

We replace A by t−
1
4 to obtain the Jones Polynomial of the knot 51 given below.

V51(t) = t2 + t4 − t5 + t6 − t7
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Example 2.13. We compute the Jones polynomial of the knot 52.

First, we compute the bracket polynomial of 52 knot.

⟨L⟩ = A2
(
−A3

)3
+ A

(
−A3

)2
+ A−1

(
A4 − A−4

)
− A−3

(
A3

)2 − A−5
(
A−4 − A4

)
= −A−11 + A7 − 2A3 − A−5 + A−1 + A−9

Now we compute the X polynomial of the knot 52.(
−A−3

)w(L) ⟨L⟩ =
(
−A−3

)5 · (
−A11 + A7 − 2A3 − A−5 + A−1 + A−9

)
= A−4 − A−8 + 2A−12 + A−20 − A−16 − A−24
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We replace A by t−
1
4 to obtain the Jones Polynomial of the knot 52 given below.

V52(t) = t1 − t2 + 2t3 − t4 + t5 − t6

Example 2.14. We compute the Jones polynomial of the knot 61:

First, we compute the bracket polynomial of the knot 61.

⟨L⟩ = A2
(
−A3

)4
+ tA (−A)3 + 2

(
−A3

)2
+ A2

(
−A4 − A−4

)
− A8

(
−A2 − A−2

)
+ A2

(
−A2 − A−2

) (
A3

)2
+ A−4

(
−A2 − A−2

) (
A−4 + A4

)
= A14 − A10 + 2A6 − 2A2 − A−6 + A−2 + A−10

Next, we compute the X polynomial of the knot 61.(
−A−3

)w(L) ⟨L⟩ =
(
−A−3

)2 · (A14 − A10 + 2A6 − 2A2 − A−6 + A−2 + A−10
)

= A8 − A4 + 2A0 − 2A−4 − A−12 + A−8 + A−16
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We replace A by t−
1
4 to obtain the Jones Polynomial of the knot 61 given below.

V61(t) = t−2 − t−1 + 2− 2 ∗ t+ t2 − t3 + t4

Example 2.15. We compute the Jones polynomial of the knot 62.

12



First, we compute the bracket polynomial of the knot 62.

⟨L⟩ = A10 − A6 + 2A2 − 2A−2 + 2A−8 − 2A−10 + A−14

Now we compute the X polynomial of the knot 62.(
−A−3

)w(L) ⟨L⟩ =
(
−A−3

)2 · (
A10 − A6 + 2A2 − 2A−2 + 2A−6 − 2A−10 + A−14

)
= A4 − 1 + 2A−4 − 2A−8 + 2A−12 − 2A−16 + A−20

We replace A by t−
1
4 to obtain the Jones Polynomial of the knot 62 given below.

V62(t) = t−1 − 1 + 2t− 2t2 + 2t3 − 2t4 + t5

13



Example 2.16. We compute the Jones polynomial of the knot 71.
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First, we compute the bracket polynomial of knot 71.

⟨L⟩ = A5(−A4 − A−4) + A3(−A−3)2 + A2(−A−3)3

+ A(−A−3)4 + (−A−3)5 + A(−A−3)6

= −A9 − A+ A−3 − A−7 + A−11 − A−15 + A−19

Next, we compute the X polynomial of knot 71.(
−A−3

)w(L) ⟨L⟩ =
(
−A−3

)7 · (−A9 − A+ A−3 − A−7 + A−11 − A−15 + A−19
)

= −A−12 − A−20 + A−24 − A−28 + A−32 − A−36 + A−40

We replace A by t−
1
4 to obtain the Jones Polynomial of the knot 71 given below.

V71(t) = t3 + t5 − t6 + t7 − t8 + t9 − t10

3. Kei

Definition 3.1. A Kei is a nonempty set X with a binary operation ∗ that satisfies

the following three axioms:

(i) Idempotency: x ∗ x = x for all x ∈ X

(ii) Right multiplication is self-inverse: (x ∗ y) ∗ y = x for all x, y ∈ X

(iii) Self-distributivity: (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x, y, z ∈ X

Idempotency: The first Kei axiom states that for every element x in a setX, applying

the operation to x with itself returns x (i.e., x ∗ x = x). This property ensures that

each element is unchanged when operated on by itself, similar to how an idempotent

matrix A satisfies A2 = A.

Self-Inverse: The second Kei axiom indicates that for any elements x and y in X,

applying the operation to x and y, followed by applying y again, returns x (i.e., (x ∗

y) ∗ y = x). This means that y acts as its own inverse when used in the operation,
16



x

x ∗ x

x

x

Figure 3. The Reidemeister move I correspond to idempotency

analogous to an involution in mathematics, where applying an operation twice undoes

the effect.

x

x ∗ y

(x ∗ y) ∗ y

y

y yx

yx

Figure 4. The Reidemeister move II correspond to self-inverse

Self-distributivity: The third Kei axiom requires that for all x, y, and z in X, the

operation distributes over itself (i.e., (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z)). This means the

operation is self-distributive, similar to how multiplication distributes over addition.

x y z

z y ∗ z (x ∗ y) ∗ z

x ∗ y

x y z

z y ∗ z (x ∗ z) ∗ (y ∗ z)

x ∗ z

Figure 5. The Reidemeister move III correspond to self-distributivity

Example 3.2. Let X = Z or X = Zn, and define the operation ∗ by:

x ∗ y = 2y − x
17



If X = Zn, then 2y − x is computed modulo n. Then, X is a Kei, called the Takasaki

Kei or the dihedral Kei, as explained below.

(i) For all x ∈ X, x ∗ x = 2x− x = x.

(ii) For all x, y ∈ X, (x ∗ y) ∗ y = (2y − x) ∗ y = 2y − (2y − x) = 2y − 2y + x = x.

(iii) For all x, y, z ∈ X,

(x ∗ y) ∗ z = 2z − (x ∗ y) = 2z − (2y − x) = 2z − 2y + x

while

(x∗z)∗(y∗z) = 2(y∗z)−(x∗z) = 2(2z−y)−(2z−x) = 4z−2y−2z+x = 2z−2y+x.

Example 3.3. Take X = Z3 and x ∗ y = 2y − x (mod 3). Then the multiplication

table of the dihedral Kei (X, ∗) of order 3 is given by

∗ 0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

Example 3.4. Take X = Z4 and x ∗ y = 2y − x (mod 4). Then the multiplication

table of the dihedral Kei (X, ∗) of order 4 is given by

∗ 0 1 2 3

0 0 2 0 2

1 3 1 3 1

2 2 0 2 0

3 1 3 1 3
18



3.1. Fundamental Kei of a Knot. The fundamental kei of a knot K is an algebraic

structure associated with each knot, link, or tangle, described by a set X with a kei

operation ∗.

Example 3.5. We compute the fundamental Kei of the pentafoil knot. This fundamen-

tal kei, denoted K(K), is derived from the knot diagram. Let X = {x1, x2, x3, x4, x5}.

The fundamental Kei of the pentafoil knot as follows based on teh crossing relations

and the three axioms of a Kei.

K(K) = {x1, x2, x3, x4, x5 | x3∗x1 = x4, x1∗x4 = x2, x4∗x2 = x5, x2∗x5 = x3 x5∗x3 = x1}.

x1

x2

x4

x3

x5

Here is the presentation matrix we get by the fundamental kei and the idempotency:

∗ x1 x2 x3 x4 x5

x1 x1 x3 x5 x2 x4

x2 x5 x2 x4 x1 x3

x3 x4 x1 x3 x5 x2

x4 x3 x5 x2 x4 x1

x5 x2 x4 x1 x3 x5

3.2. Kei Homomorphism.

Definition 3.6. A kei homomorphism is a function between two keis that preserves

the kei structure. More formally, let (X, ∗) and (Y, ·) be two keis. A map f : X → Y
19



is a kei homomorphism if for all elements a, b ∈ X, the following condition holds:

f(a ∗ b) = f(a) · f(b)

This means that the operation in the kei X is preserved under the map f when applied

to the elements in Y .

3.3. Kei Counting Invariant.

Definition 3.7. The kei counting invariant is an algebraic invariant used in knot

theory to distinguish between different knots and links. It is derived by counting the

number of homomorphisms from the fundamental kei of a knot (or link) to a finite kei.

This number is denoted as ϕ(K,X) and provides a way to distinguish between different

knots and links. Formally, let K be a knot and X be a finite kei. The kei counting

invariant ϕ(K,X) is the number of homomorphisms from the fundamental kei K(K)

of the knot K to the kei X.

Example 3.8.

Let us compute the kei counting invariant for the Hopf link with respect to the four

element Takasaki kei Z4. The crossing relations R1 and R2 are x∗y = x and y ∗x = y.

Then we have
20



∗ 0 1 2 3

0 0 2 0 2

1 3 1 3 1

2 2 0 2 0

3 1 3 1 3

f(x) f(y) R1 R2 f(x) f(y) R1 R2

0 0 ✓ ✓ 2 0 ✓ ✓

0 1 2 1

0 2 ✓ ✓ 2 2 ✓ ✓

0 3 2 3 ✓ ✓

1 0 3 0 ✓ ✓

1 1 ✓ ✓ 3 1

1 2 3 2

1 3 ✓ ✓ 3 3 ✓ ✓

Thus, we have |Hom(K(K),Z4)| = 8.

4. Quandles

4.1. Quandle.

Definition 4.1. Quandle is an algebraic structure used in knot theory to study the

properties of knots and links. It is a set X equipped with a binary operation ∗ :

X ×X → X that satisfies the following axioms:

(i) Idempotence: For all a ∈ X, a ∗ a = a.

(ii) Right Invertibility: For all a, b ∈ X, the map βb : X → X defined by βb(a) = a∗b

is invertible.
21



(iii) Self-distributivity: For all a, b, c ∈ X, (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c).

4.2. Latin Quandle.

Definition 4.2. A quandle is called Latin if, for every element a ∈ X, the map

λa : X → X defined by λa(b) = a ∗ b is a bijection. In other words, a quandle X is

Latin if the rows and columns of its operation table are permutations.

4.3. Orbit of a Quandle.

Definition 4.3. The orbit of an element x in a quandle X, denoted by Orb(x), is

the set of elements y ∈ X such that there exists an inner automorphism f ∈ Inn(X)

mapping x to y. In other words, the orbit of x in X comprises of all elements that can

be reached from x by the right multiplication.

4.4. Dihedral Quandle.

Definition 4.4. Let X = {b, ab, a2b, . . . , an−1b}. The set X is the subset of all re-

flections of the dihedral group Dn of order 2n. Define the conjugation operation ∗ as

follows:

x ∗ y = yxy−1

where

x = aib for some 0 ≤ i ≤ n− 1,

y = ajb for some 0 ≤ j ≤ n− 1.

Let’s compute x ∗ y:

x ∗ y = yxy−1 = (ajb)(aib)(ajb)−1

= (ajb)(aib)(b−1a−j)

= aj(bai)a−j

= aj(a−ib)a−j

22



= aj−iba−j

= aj−iajb

= a2j−ib

Thus, we have shown that the quandle operation x ∗ y = yxy−1 in the set X translates

to x ∗ y = a2j−ib. By considering the one-to-one correspondence aiv ↔ i between the

set of reflections of X and Zn, we can transfer the quandle operation from the set of

reflections of X to Zn by defining a ∗ b = 2b− a mod n for a, b ∈ Zn (integers modulo

n). The set Zn with this quandle structure is called the dihedral quandle, denoted by

Rn.

4.5. Alexander Quandle.

Definition 4.5. An Alexander quandle is defined using a module over the ring of

Laurent polynomials Z[t, t−1]. Specifically, an Alexander quandle Q is constructed as

follows:

(1) Module Structure: Consider a module M over the ring Z[t, t−1].

(2) Binary Operation: The quandle operation is defined for elements x, y ∈ M

by:

x ∗ y = tx+ (1− t)y

where t is a fixed element in Z[t, t−1].

Example 4.6. In the Alexander quandle A = Λ3/(2 + t + t2), we have 2 + t + t2 = 0

which implies t2 = −2−t = 1+2t (since we have Z3 coefficients). Then the elements of

A are {0, 1, 2, t, 1+ t, 2+ t, 2t, 1+2t, 2+2t}. The multiplication table of the Alexander
23



quandle is:

∗ 0 1 2 t 1 + t 2 + t 2t 1 + 2t 2 + 2t

0 0 1 + 2t 2 + t 2 + 2t 2t 1 1 + t 2 2t

1 t 1 2 + 2t 2 0 1 + t 2 + t 1 + 2t 0

2 2t 1 + t 2 2 + t t 1 + 2t 1 2 + 2t t

t 1 + 2t 2 + t 0 t 1 + 2t 2 + 2t 2 2t 1 + t

1 + t 1 2 + 2t t 2t 1 + t 2 2 + t 0 1 + 2t

2 + t 1 + t 2 2t 0 1 2 + t 2 + 2t t 1

2t 2 + t t 1 + 2t 1 2 t 2t 1 + 2t 2 + t

1 + 2t 2 + 2t 2t 1 1 + t 2 + t 2t 0 1 2 + 2t

2 + 2t 2 0 1 + t 1 + 2t 2 + 2t 0 t 1 + t 2

4.6. Alexander Polynomial.

Definition 4.7. The Alexander Polynomial is a knot invariant. This is a Laurent

polynomial which means the variable t can have negative powers. The way to compute

the Alexander polynomial is to take the determinant of an (n− 1)× (n− 1) minor of

the presentation matrix A. After we normalize it by getting rid of the negative power

and make the constant term positive, we will get our normalized polynomial.

Example 4.8. We first compute the Alexander polynomial of the Pentafoil Knot.

x1

x2

x4

x3

x5
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We derive the following equations based on the crossing relations:

t−1x3 + (1− t−1)x1 = x4

t−1x1 + (1− t−1)x4 = x2

t−1x4 + (1− t−1)x2 = x5

t−1x2 + (1− t−1)x5 = x3

t−1x5 + (1− t−1)x3 = x1

We form the presentation matrix based on the equations above.

A =



(1− t−1) 0 t−1 −1 0

t−1 −1 0 (1− t−1) 0

0 (1− t−1) 0 t−1 −1

0 t−1 −1 0 (1− t−1)

−1 0 (1− t−1) 0 t−1


The 4× 4 minor of A is:

(1− t−1) 0 t−1 −1

t−1 −1 0 (1− t−1)

0 (1− t−1) 0 t−1

0 t−1 −1 0


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The determinant of the minor of A is given by

(1− t−1) ·

∣∣∣∣∣∣∣∣∣
−1 0 (1− t−1)

(1− t−1) 0 t−1

t−1 −1 0

∣∣∣∣∣∣∣∣∣+ 0 ·

∣∣∣∣∣∣∣∣∣
t−1 0 (1− t−1)

0 0 t−1

0 −1 0

∣∣∣∣∣∣∣∣∣
+ t−1 ·

∣∣∣∣∣∣∣∣∣
t−1 −1 (1− t−1)

0 (1− t−1) t−1

0 t−1 0

∣∣∣∣∣∣∣∣∣− (−1) ·

∣∣∣∣∣∣∣∣∣
t−1 −1 0

0 (1− t−1) 0

0 t−1 −1

∣∣∣∣∣∣∣∣∣
= (1− t−1)(−1) + t−1(−t−3)− (−1)(−t−1 + t−2)

= (1− t−1)(−1) + t−1(−t−3)− (t−1 − t−2)

= −1 + t−1 − t−1 · t−3 − t−1 + t−2

Multiply by −t4 to obtain the Alexander polynomial:

1− t+ t2 − t3 + t4

Example 4.9.

26



We derive the following equations based on the crossing relations:

t−1a+ (1− t−1)d = b

tb+ (1− t)f = c

tc+ (1− t)e = d

t−1d+ (1− t−1)a = e

te+ (1− t)c = f

tf + (1− t)b = a

A =



t−1 −1 0 (1− t−1) 0 0

0 t −1 0 0 (1− t)

0 0 t −1 (1− t) 0

(1− t−1) 0 0 t−1 −1 0

0 0 1− t 0 t −1

−1 1− t 0 0 0 t


The 5× 5 minor of A is:

t−1 −1 0 1− t−1 0

0 t −1 0 0

0 0 t −1 1− t

1− t−1 0 0 t−1 −1

0 0 1− t 0 t



27



The determinant of the minor of A is given by

= t−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

t −1 0 0

0 t −1 1− t

0 0 t−1 −1

0 1− t 0 t

∣∣∣∣∣∣∣∣∣∣∣∣∣
− (−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 −1 0 0

0 t −1 1− t

1− t−1 0 t−1 −1

0 1− t 0 t

∣∣∣∣∣∣∣∣∣∣∣∣∣

+ 0− (1− t−1)

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 t −1 0

0 0 t 1− t

1− t−1 0 t−1 −1

0 0 0 t

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ 0

= −2t2 + 5t− 2

Multiply by −1 to obtain the Alexander polynomial:

2t2 − 5t+ 2

Example 4.10.
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We derive the following equations based on the crossing relations:

ta+ (1− t)e = b

tb+ (1− t)f = c

tc+ (1− t)g = d

td+ (1− t)a = e

te+ (1− t)b = f

tf + (1− t)c = g

tg + (1− t)d = a

We form the presentation matrix based on the equations above.

A =



t −1 0 0 (1− t) 0 0

0 t −1 0 0 (1− t) 0

0 0 t −1 0 0 (1− t)

(1− t) 0 0 t −1 0 0

0 (1− t) 0 0 t −1 0

0 0 (1− t) 0 0 t −1

−1 0 0 (1− t) 0 0 t


The 6× 6 minor of A is:

t −1 0 0 (1− t) 0

0 t −1 0 0 (1− t)

0 0 t −1 0 0

(1− t) 0 0 t −1 0

0 (1− t) 0 0 t −1

0 0 (1− t) 0 0 t


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The determinant of the minor of A is given by

t6 − t5 + t4 − t3 + t2 − t+ 1,

which is the Alexander Polynomial of the knot 71.

4.7. Quandle polynomial.

Definition 4.11. Let X be a finite quandle. For elements x, y ∈ X, let

r(x) = |{y ∈ X | x ∗ y = x}|

and

c(x) = |{y ∈ X | y ∗ x = y}|

For any element x ∈ X, we have a pair (r(x), c(y)) of integers. We now define a

two-variable polynomial P (X) is defined as:

P (X) =
∑
x,y∈X

tr(x)sc(y)

The polynomial P (X) is called the quandle polynomial of the quandle X.

Example 4.12. Let X be the quandle of order 4 whose multiplication table is given by

∗ 1 2 3 4

1 1 1 1 1

2 3 2 2 3

3 2 3 3 2

4 4 4 4 4
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Calculations for r(x) and c(x) are given by

r(1) = 4 c(1) = 2

r(2) = 2 c(2) = 4

r(3) = 2 c(3) = 4

r(4) = 4 c(4) = 2

The quandle polynomial is

P (X) = 2t4s2 + 2t2s4

Example 4.13. The following table contains quandle polynomials of all quandles of

order 4 and 5:

Quandle Quandle Polynomial

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4


P (X) = 4t4 ∗ s4



1 1 1 1

2 2 2 3

3 3 3 2

4 4 4 4


P (X) = t4 ∗ s4 + 2t3 ∗ s4 + t4 ∗ s2
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

1 1 1 2

2 2 2 3

3 3 3 1

4 4 4 4


P (X) = 3t3 ∗ s4 + t4 ∗ s1



1 1 2 2

2 2 1 1

3 3 3 3

4 4 4 4


P (X) = 2t2 ∗ s4 + 2t4 ∗ s2



1 1 1 1

2 2 4 3

3 4 3 2

4 3 2 4


P (X) = t4 ∗ s4 + 3t2 ∗ s2



1 1 2 2

2 2 1 1

4 4 3 3

3 3 4 4


P (X) = 4t2 ∗ s2
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

1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4


P (X) = 4t ∗ s



1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5



P (X) = 5 ∗ t5 ∗ s5



1 1 1 1 1

2 2 2 2 3

3 3 3 3 4

4 4 4 4 2

5 5 5 5 5



P (X) = t5 ∗ s5 + 3t4 ∗ s5 + t5 ∗ s2



1 1 1 1 2

2 2 2 2 3

3 3 3 3 4

4 4 4 4 1

5 5 5 5 5



P (X) = 2t4∗s5+t3∗s5+t4∗s4+t5∗s1
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

1 1 1 2 2

2 2 2 3 3

3 3 3 1 1

4 4 4 4 4

5 5 5 5 5



P (X) = 3t3 ∗ s5 + 2t5 ∗ s2



1 1 1 1 1

2 2 2 2 2

3 3 3 5 4

4 4 5 4 3

5 5 4 3 5



P (X) = 2t5 ∗ s5 + 3t3 ∗ s3



1 1 2 2 2

2 2 1 1 1

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5



P (X) = 2t2 ∗ s5 + 3t5 ∗ s3
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

1 1 1 1 1

2 2 2 2 2

3 3 3 3 4

4 4 4 4 3

5 5 5 5 5



P (X) = 2t5 ∗ s5 + 2t4 ∗ s5 + t5 ∗ s3



1 1 1 1 2

2 2 2 2 1

3 3 3 3 4

4 4 4 4 3

5 5 5 5 5



P (X) = 4t4 ∗ s5 + t5 ∗ s



1 1 1 1 1

2 2 2 3 3

3 3 3 2 2

4 4 4 4 4

5 5 5 5 5



P (X) = t5 ∗ s5 + 2t3 ∗ s5 + 2t5 ∗ s3
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

1 1 1 2 3

2 2 2 3 1

3 3 3 1 2

4 4 4 4 4

5 5 5 5 5



P (X) = 4t4 ∗ s5 + t5 ∗ s



1 1 1 2 2

2 2 2 1 1

3 3 3 3 3

4 4 5 4 4

5 5 4 5 5



P (X) = 2t3 ∗ s5 + t5 ∗ s3 + 2t4 ∗ s3



1 1 2 2 2

2 2 1 1 1

3 3 3 3 4

4 4 4 4 3

5 5 5 5 5



P (X) = 2t2 ∗ s5 + 2t4 ∗ s3 + t5 ∗ s
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

1 1 2 2 2

2 2 1 1 1

3 3 3 5 4

4 4 5 4 3

5 5 4 3 5



P (X) = 2t2 ∗ s5 + 3t3 ∗ s



1 1 1 1 1

2 2 5 3 4

3 4 3 5 2

4 5 2 4 3

5 3 4 2 5



P (X) = t5 ∗ s5 + 4t2 ∗ s2



1 1 1 2 2

2 2 2 3 3

3 3 3 1 1

5 5 5 4 4

4 4 4 5 5



P (X) = 3t3 ∗ s3 + 2t2 ∗ s2

37





1 1 2 2 2

2 2 1 1 1

4 5 3 5 4

5 3 5 4 3

3 4 4 3 5



P (X) = 2t2 ∗ s2 + 3t ∗ s



1 1 1 1 1

2 2 2 3 3

3 3 3 2 2

4 5 5 4 4

5 4 4 5 5



P (X) = t5 ∗ s5 + 4t3 ∗ s3



1 1 2 2 2

2 2 1 1 1

3 3 3 3 3

5 5 5 4 4

4 4 4 5 5



P (X) = 4t2 ∗ s3 + t5 ∗ s
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

1 1 1 1 1

2 2 2 3 3

3 3 3 2 2

5 5 5 4 4

4 4 4 5 5



P (X) = t5 ∗ s3 + 2t3 ∗ s3 + 2t2 ∗ s3



1 3 4 5 2

3 2 5 1 4

4 5 3 2 1

5 1 2 4 3

2 4 1 3 5



P (X) = 5t ∗ s



1 4 5 3 2

3 2 4 5 1

2 5 3 1 4

5 1 2 4 3

4 3 1 2 5



P (X) = 5t ∗ s
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

1 4 5 2 3

3 2 1 5 4

4 5 3 1 2

5 3 2 4 1

2 1 4 3 5



P (X) = 5t ∗ s

5. The Meeting Point of Quandles and Groups

5.1. The Groups Generated by the Columns of Quandles. The group generated

by the columns of a quandle refers to the subgroup of the symmetric group (or, more

generally, the automorphism group) that is generated by the permutations induced

by the columns of the quandle operation table.

(1) Columns as Permutations:

Let Q be a quandle with a binary operation ∗ satisfying:

• Idempotency: x ∗ x = x for all x ∈ Q.

• Right-invertibility: For each a ∈ Q, the map fa : Q → Q defined by

fa(x) = x ∗ a is bijective.

• Self-distributivity: (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z) for all x, y, z ∈ Q.

Each element a ∈ Q induces a permutation fa, where the columns of the quandle

operation table correspond to these permutations.

(2) Group Generated by Columns:
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Consider the set of permutations {fa | a ∈ Q}, which act on Q. The group

generated by these permutations is the subgroup of the symmetric group SQ

given by:

G = ⟨fa | a ∈ Q⟩ ⊆ SQ.

(3) Connection to the Inner Automorphism Group:

If the quandle is a rack (i.e., every right multiplication fa is bijective), then

these permutations naturally form a subgroup of Sym(Q). This subgroup is

often called the inner automorphism group, denoted as:

Inn(Q) = ⟨fa | a ∈ Q⟩.

Example 5.1. The following table contains the cycle structure of column permutation,

inner automorphism group Inn(Q) and automorphism group Aut(Q) of all quandles of

order 3, 4, and 5. We denote the dihedral group of order 2n by Dn.

Quandle Column cycles Inn(Q) Aut(Q)

1 1 1

2 2 2

3 3 3


{(1)} {(1)} S3



1 3 2

3 2 1

2 1 3

 {(2 3), (1 3), (1 2)}

S3 S3
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

1 1 1

3 2 2

2 3 3


{(1), (2 3)} Z2 Z2



1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4


{(1)} {(1)} S4



1 1 1 1

2 2 2 3

3 3 3 2

4 4 4 4


{(1), (2 3)} Z2 Z2



1 1 1 2

2 2 2 3

3 3 3 1

4 4 4 4


{(1), (2 3 1)} Z3 Z3



1 1 2 2

2 2 1 1

3 3 3 3

4 4 4 4


{(1), (1 2)} Z2 Z2

⊕
Z2
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

1 1 1 1

2 2 4 3

3 4 3 2

4 3 2 4


{(1), (3 4),

(2 4), (2 3)}
S3 S3



1 1 2 2

2 2 1 1

4 4 3 3

3 3 4 4


{(1 2), (3 4)} Z2

⊕
Z2 D4



1 4 2 3

3 2 4 1

4 1 3 2

2 3 1 4


{(2 3 4), (1 4 3),

(1 2 4), (1 3 2)}
A4 A4



1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5



{(1)} {(1)} S5
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

1 1 1 1 1

2 2 2 2 3

3 3 3 3 4

4 4 4 4 2

5 5 5 5 5



{(1), (2 3 4)} Z3 Z3



1 1 1 1 2

2 2 2 2 3

3 3 3 3 4

4 4 4 4 1

5 5 5 5 5



{(1), (1 2 3 4)} Z4 Z4



1 1 1 2 2

2 2 2 3 3

3 3 3 1 1

4 4 4 4 4

5 5 5 5 5



{(1), (1 2 3)} Z3 Z3
⊕

Z2
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

1 1 1 1 1

2 2 2 2 2

3 3 3 5 4

4 4 5 4 3

5 5 4 3 5



{(1), (4 5),

(3 5), (3 4)}
D3 D6



1 1 2 2 2

2 2 1 1 1

3 3 3 3 3

4 4 4 4 4

5 5 5 5 5



{(1), (1 2)} Z2 D6



1 1 1 1 1

2 2 2 2 2

3 3 3 3 4

4 4 4 4 3

5 5 5 5 5



{(1), (3 4)} Z2 Z2
⊕

Z2
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

1 1 1 1 2

2 2 2 2 1

3 3 3 3 4

4 4 4 4 3

5 5 5 5 5



{(1), (1 2)(3 4)} Z2 D4



1 1 1 1 1

2 2 2 3 3

3 3 3 2 2

4 4 4 4 4

5 5 5 5 5



{(1), (2 3)} Z2 Z2
⊕

Z2



1 1 1 2 3

2 2 2 3 1

3 3 3 1 2

4 4 4 4 4

5 5 5 5 5



{(1), (1 2 3),

(1 3 2)}
Z3 D3
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

1 1 1 2 2

2 2 2 1 1

3 3 3 3 3

4 4 5 4 4

5 5 4 5 5



{(1), (4 5),

(1 2)}
Z2

⊕
Z2 Z2

⊕
Z2



1 1 2 2 2

2 2 1 1 1

3 3 3 3 4

4 4 4 4 3

5 5 5 5 5



{(1), (1 2),

(1 2)(3 4)}
Z2

⊕
Z2 Z2

⊕
Z2



1 1 2 2 2

2 2 1 1 1

3 3 3 5 4

4 4 5 4 3

5 5 4 3 5



{(1), (1 2),

(1 2)(3 4)}
Z2

⊕
Z2 D6
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

1 1 1 1 1

2 2 5 3 4

3 4 3 5 2

4 5 2 4 3

5 3 4 2 5



{(1), (3 4 5),

(2 5 4), (2 3 5),

(2 4 3)}

A4 A4



1 1 1 2 2

2 2 2 3 3

3 3 3 1 1

5 5 5 4 4

4 4 4 5 5


{(1), (4 5), (1 2 3)}

Z6 Z6



1 1 2 2 2

2 2 1 1 1

4 5 3 5 4

5 3 5 4 3

3 4 4 3 5


{(1), (3 4 5),

(3 5 4), (1 2)(4 5),

(1 2)(3 5),

(1 2)(3 4)}

D3 D3
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

1 1 1 1 1

2 2 2 3 3

3 3 3 2 2

4 5 5 4 4

5 4 4 5 5



{(1), (4 5), (2 3)} Z2
⊕

Z2 D4



1 1 2 2 2

2 2 1 1 1

3 3 3 3 3

5 5 5 4 4

4 4 4 5 5



{(1), (1 2), (4 5)} Z2
⊕

Z2 D4



1 1 1 1 1

2 2 2 3 3

3 3 3 2 2

5 5 5 4 4

4 4 4 5 5



{(1), (2 3), (4 5)} Z2
⊕

Z2 Z2
⊕

Z2
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

1 3 4 5 2

3 2 5 1 4

4 5 3 2 1

5 1 2 4 3

2 4 1 3 5



{(2 3 4 5),

(1 3 5 4),

(1 4 2 5),

(1 5 3 2),

(1 2 4 3)}

D10 D10



1 4 5 3 2

3 2 4 5 1

2 5 3 1 4

5 1 2 4 3

4 3 1 2 5



{(2 3)(4 5),

(1 4)(3 5),

(1 5)(2 4),

(1 3)(2 5),

(1 2)(3 4)}

D5 D10



1 4 5 2 3

3 2 1 5 4

4 5 3 1 2

5 3 2 4 1

2 1 4 3 5



{(2 3 4 5),

(1 4 3 5),

(1 5 4 2),

(1 2 5 3),

(1 3 2 4)}

D10 D10

5.2. The Fundamental Group. Let X be a topological space and let x0 ∈ X be a

chosen base point. The fundamental group of X at x0, denoted π1(X, x0), is the set of

all homotopy classes of loops based at x0.

A loop is a continuous map γ : [0, 1] → X such that γ(0) = γ(1) = x0.
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Two loops γ1 and γ2 based at x0 are said to be homotopic (written γ1 ≃ γ2) if there

exists a continuous map

H : [0, 1]× [0, 1] → X

such that:

H(0, t) = γ1(t), H(1, t) = γ2(t), H(s, 0) = H(s, 1) = x0 for all s ∈ [0, 1].

The group operation on π1(X, x0) is given by concatenation of loops, and the

identity element is the constant loop at x0. The inverse of a loop is the same path

traversed in the reverse direction.

5.3. Braid Groups. The braid group on n strands, denoted Bn, is a group that de-

scribes the motion of n distinguishable strands in three-dimensional space such that

they return to their original positions but may be interwoven.

Definition. The braid group Bn has the following presentation:

Bn =
〈
σ1, σ2, . . . , σn−1 |

σiσj = σjσi, for|i− j| ≥ 2,

σiσi+1σi = σi+1σiσi+1, for 1 ≤ i ≤ n− 2

〉
,

where

• σi represents a braid generator, corresponding to exchanging the i-th and

(i+ 1)-th strands with a right-handed crossing.

• The first relation σiσj = σjσi (for |i−j| ≥ 2) states that non-adjacent crossings

commute.

• The second relation σiσi+1σi = σi+1σiσi+1 (the braid relation) describes how

adjacent crossings interact.

Geometric Interpretation. A braid can be visualized as a collection of n strands

connecting n fixed points on the top to n fixed points on the bottom, such that the

strands do not backtrack.
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5.4. Quandles and Quasigroups.

Definition 5.2. A quasigroup is a set Q equipped with a binary operation ∗ such

that for every pair of elements a, b ∈ Q, there exist unique elements x, y ∈ Q satisfying:

x ∗ a = b and a ∗ y = b.

That is, the equations

x ∗ a = b (left division)

a ∗ y = b (right division)

always have unique solutions for x and y in Q.

A quasigroup can also be viewed as a Latin square structure, meaning that in the

operation table of Q, each element appears exactly once in every row and every column.

• A loop is a quasigroup that has an identity element e such that e∗x = x∗e = x

for all x ∈ Q.

• A group is a loop where the binary operation is associative, i.e., (x ∗ y) ∗ z =

x ∗ (y ∗ z) for all x, y, z ∈ Q.

6. Rack

Definition 6.1. A rack is a generalization of a quandle. A racks is a set R with a

binary operation ∗ : R×R → R satisfying:

(i) For all y ∈ R, the map βy : R → R defined by βy(x) = x ∗ y is invertible.

(ii) For all x, y, z ∈ R, (x ∗ y) ∗ z = (x ∗ z) ∗ (y ∗ z).
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Example 6.2. The multiplication table of a rack of order 3 is given by

∗ 0 1 2

0 2 2 2

1 0 0 0

2 1 1 1

6.1. Rack polynomial.

Definition 6.3. If X is a rack in Definition 4.11, then the polynomial is the rack

polynomial.

7. Shelf

Definition 7.1. A shelf is a set S equipped with a binary operation ∗ : S × S → S

such that for all x, y, z ∈ S, they hold the self-distributivity:

x ∗ (y ∗ z) = (x ∗ y) ∗ (y ∗ z).

Example 7.2. The multiplication table of a shelf of order 3 is given by

∗ 0 1 2

0 0 1 2

1 0 1 2

2 0 1 2

7.1. Shelf polynomial.

Definition 7.3. If X is a shelf in Definition 4.11, then the polynomial is called a shelf

polynomial.
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8. Quandle Rings and Rack Rings

Definition 8.1. Let Q be a quandle and R an associative ring with unity. Let R[Q]

be the set of all formal finite R-linear combinations of elements of Q.

R[Q] :=
{∑

i

αixi |αi ∈ R, xi ∈ Q
}

R[Q] is an additive abelian group with coefficient-wise addition. Define multiplication

in R[Q] by setting

(∑
i

αixi

)
·
(∑

j

βjxj

)
:=

∑
i,j

αiβj (xi ∗ xj).

Then, R[Q] is a non-associative ring with coefficients in R.

8.1. Idempotents in Quandle Rings. We give a complete classification of the idem-

potents and tripotents in quandle rings Zp[Q], where Q is a connected quandle and p

is prime.

9. Idempotents in Zp[Q], where |Q| = 3

In this section, we study idempotents in quandle rings where Q is of order 3. We

also give a formula for the number of idempotents in terms of |Q| and p. There is only

one connected quandle of order 3 whose multiplication table is given by

∗ X0 X1 X2

X0 X0 X2 X1

X1 X2 X1 X0

X2 X1 X0 X2

Let r = α0X0 + α1X1 + α2X2, and set r2 = r. That is,

(α0X0 + α1X1 + α2X2)
2 = α0X0 + α1X1 + α2X2.
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(α0X0 + α1X1 + α2X2)
2 = (α0X0 + α1X1 + α2X2) · (α0X0 + α1X1 + α2X2)

= (α2
0 + α1α2 + α2α1)X0 + (α2

1 + α0α2 + α2α0)X1

+ (α2
2 + α0α1 + α1α0)X2

Thus

α0X0+α1X1+α2X2 = (α2
0+α1α2+α2α1)X0+(α2

1+α0α2+α2α0)X1+(α2
2+α0α1+α1α0)X2

By comparing the coefficients, we obtain the following set of equations:

α2
0 + α1α2 + α2α1 = α0

α2
1 + α0α2 + α2α0 = α1

α2
2 + α0α1 + α1α0 = α2

Let α0, α1, and α2 be x, y, and z, respectively. Then the above set of equations can

be written as

x2 − x+ 2yz = 0

y2 − y + 2xz = 0

z2 − z + 2xy = 0

Now we consider three cases: p = 2, p = 3, and p > 3. We will first discuss the case

p > 3.
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9.0.1. p > 3.

f1 = x2 − x+ 2yz

f2 = y2 − y + 2xz

f3 = z2 − z + 2xy

Let p = {f1, f2, f3} . Let p > 3 and x > y > z (Lex order).

f1 = x2 − x+ 2yz

f2 = 2xz + y2 − y

f3 = 2xy + z2 − z

Gröbner basis for the ideal generated by f1, f2, f3.

s(f1, f2) =
x2z

x2

(
y2 − y − x+ 2yz

)
− x2z

2xz

(
2xz + y2 − y

)
= x2z − xz + 2yz2 − x2z − 1

2
xy2 +

1

2
xy

= −1

2
xy2 +

1

2
xy − xz + 2yz2

s(f1, f2) = 0 · f1 +
(
−1

2

)
· f2 +

(
1

4
− y

4

)
· f3 +

1

4

(
−2y + 2y2 + z − yz − z2 + 4yz2

)
We have

s(f1, f2)p ̸= 0
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Let f4 =
1
4
(−2y + 2y2 + z − yz − z2 + 4yz2), and add it to the set p = {f1, f2, f3, f4}

Then, we have

f4 =
1

2
y2 +

9

4
yz2 − 1

4
yz − 1

2
y − 1

4
z2 +

z

4
.

None of the leading monomials of f1, f2, f3 divides LM(f4), and thus s(f1, f2)
p
= 0.

Now, let’s compute s(f1, f3).

s(f1, f3) =
x2y

x2

(
x2 − x+ 2yz

)
− x2y

2xy

(
2xy + z2 − z

)
= −xy − 1

2
xz2 +

1

2
xz + 2y2z

s(f1, f3) = 0 · f1 +
(
1

4
− z

4

)
· f2 +

(
−1

2

)
· f3 +

(
−1

2
+

9z

2

)
· f4

+

(
−3

8

)
· (z − 5yz + 2z2 − 6yz2 − 3z3 + 27yz3)

which gives us

s(f1, f3) =

(
−3

8

)
· (z − 5yz + 2z2 − 6yz2 − 3z3 + 27yz3)

Clearly, s(f1, f3)
p
̸= 0, and we let it to be f5 and add it to p.

Thus

p = {f1, f2, f3, f4, f5}.

None of the leading monomials of f1, f2, f3, f4 divides LM(f5), and therefore s(f1, f3)
p
=

0.

s(f1, f4) =
x2y2

x2

(
x2 − x+ 2yz

)
− x2y2(

1
2
y2
) (1

2
y2 +

9

4
yz2 − 1

4
yz − 1

2
y − 1

4
z2 +

z

4

)

= −9

2
x2yz2 +

1

2
x2yz + x2y +

1

2
x2z2 − 1

2
x2z − xy2 + 2y3z
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= q1 · f1 + q2 · f2 + q3 · f3 + q4 · f4 + q5 · f5 + f6,

where

q1 =
1

2

(
2y − z + yz + z2 − 9yz2

)
,

q2 =
1

2

(
−1

2
+

y

2
+

z

2
− 9yz

2

)
,

q3 =
y

2
,

q4 = 2

(
1

4
− y

4
− 33

8
+

17yz

4
+

9z2

4
− 81z3

8

)
,

q5 = 4

(
− 1

36
+

z

8
− 9z2

8

)
,

f6 = s(f1, f4)
f
=

1

12

(
4z − 2yz − z2 − 6yz2 − 30z3 + 27z4

)
.

Let

p = {f1, f2, f3, f4, f5, f6}.

s(f1, f5) =
x2yz3

x2

(
x2 − x+ 2yz

)
− x2yz3

(
−81

8

)
yz3

(
−81

8
yz3 +

18

8
yz2 +

15

8
yz +

9

8
z3 − 6

8
z2 − 3

8
z

)
=

18

81
xyz2 +

15

81
xyz +

9

81
xz3 − 6

81
xz2 − 3

81
x2z − xyz3 + 2y2z4

= q1 · f1 + q2 · f2 + q3 · f3 + q4 · f4 + q5 · f5 + q6 · f6 + f7,

where

q1 =
1

27

(
−z + 5yz − 27z2 + 6yz2 + 3z3

)
,

q2 =
1

27

(
−1

2
+

5y

2
− z + 3yz +

3z2

2
− 27yz2

2

)
,
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q3 = 0,

q4 =
4

27

(
1

4
− 5y

4
− z

8
− 3yz

2
− 7z2

8
+

27yz2

4
+

33z3

8
− 27z4

8

)
,

q5 =
8

27

(
13

972
− 11z

216
+

5z2

12
− 33z3

8

)
,

q6 = − 8

729
, and

R = s(f2, f5)
f
=

1

486

(
−2z + 5z2 + 15z3 − 45z4 + 27z5

)
Note that 486 ̸= 0 since p > 3 because 486 = 2 · 35.

f7 = s(b1, f3)
f
=

1

486

(
27z5 − 45z4 + 15z3 + 5z2 − 2z

)
̸= 0

We have

p = {f1, f2, f3, f4, f5, f6, f7}

and

s(f2, f5)
f
= 0.

We have already computed

s(f1, f2), s(f1, f3), s(f1, f4), s(f2, f4), s(f2, f5).
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Let’s compute other S-polynomials.

s(fi, fj), where i < j and i, j ∈ {1, 2, . . . , 7}.

s(f1, f6) =
x2yz2

x2

(
x2 − x+ 2yz

)
− x2yz2

−1
2
yz2

(
−1

2
yz2 − 1

6
yz +

9

4
z4 − 5

2
z3 − 1

12
z2 +

1

2
z

)
= x2yz2 − xyz2 + 2y2z3 − x2yz2 − 1

2
x2yz +

9

2
x2z4 − 5x2z3 − 1

6
x2z2 +

2

3
x2z

After simplifying terms, we get

s(f1, f6) = −1

3
x2yz +

9

2
x2z4 − 5x2z3 − 1

6
x2z2 +

2

3
x2z − 6yz2 + 2y2z3

Thus we have

s(f1, f6)
f
= 0.

Now we compute s(f1, f7).

s(f1, f7) =
x2z5

x2

(
x2 − x+ 2yz

)
− x2z5

(
1

18
z5 − 5

54
z4 +

5

162
z3 +

5

486
z2 − 1

243
z

)
= x2z5 − xz5 + 2yz6 − 18x2

(
1

18
z5 − 5

54
z4 +

5

162
z3 +

5

486
z2 − 1

243
z

)
= −x2z5 + 2yz6 +

5

3
x2z4 − 5

9
x2z3 − 5

27
x2z2 +

2

27
x2z

After simplifying terms, we get

s(f1, f7) =
5

3
x2z4 − 5

9
x2z3 − 5

27
x2z2 +

2

27
x2z − xz5 + 2yz6 = 0.

Now we have

s(f2, f2)
f
= s(f2, f3)

f
= s(f2, f4)

f
= s(f2, f5)

f
= s(f2, f6)

f
= s(f2, f7)

f
= 0.
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s(f3, f4)
f
= 0, s(f3, f5)

f
= 0, s(f3, f6)

f
= 0, s(f3, f7)

f
= 0

s(f4, f5)
f
= 0, s(f4, f6)

f
= 0, s(f4, f7)

f
= 0

s(f5, f6)
f
= 0, s(b5, f7)

f
= 0

s(f6, f7)
f
= 0

A Gröbner Basis for

G = ⟨x2 − x+ 2yz, 20z + y2 − y, 2xy + z2 − z⟩

is given by



f1 = x2 − x+ 2yz,

f2 = 2xz + y2 − y,

f3 = 2xy + z2 − z,

f4 =
1
2y

2 + 9
4yz

2 − 1
4yz −

1
2y −

1
4z

2 + 1
4z,

f5 = −81
8 yz

3 + 18
8 yz

2 + 15
8 yz +

9
8z

3 − 6
8z

2 − 3
8z,

f6 = −1
2yz

2 − 1
6yz +

9
4z

4 − 5
2z

3 − 1
12z

2 + 1
2z,

f7 =
1
18z

5 − 5
54z

4 + 5
162z

3 + 5
486z

2 − 1
243z.

Note that p > 3 in our computations. None of the denominators is zero since only

2 and 3 appear in their prime factorizations. So, the Gröbner basis above is well-defined.

In Zp, the solutions of f7(z) = 0 are
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z = 0, z = 1, z =
2

3
, z =

1

3
, z = −1

3
.

Now we have the roots of the last polynomial f7 in the Gröbner basis. These are in

Zp, for any p ≥ 3. f(z) ≡ 0 ⇒ z = 0, z = 1, z = 2
3
, z = 1

3
, z = −1

3
. Now, let’s

consider the fourth polynomial f4 in the Gröbner basis.

f4(y, z) =
1

2
y2 +

9

4
yz2 − 1

4
yz − 1

2
y − 1

4
z2 +

1

4
z

Set f4 = 0. The pairs (y, z) that satisfy the equation f4 = 0 are

(0, 0), (1, 0), (0, 1), (−3, 1),

(
−1

3
,
2

3

)
,

(
1

3
,
1

3

)
,

(
−1

3
,−1

3

)
,

(
2

3
,−1

3

)
.

In order to find all (x, y, z) satisfy our system of our Gröbner basis, we consider the

polynomial f5.

f5(0, 0) = 0,

f5(1, 0) = 0,

f5(0, 1) = 0,

f5(−3, 1) = 18 ̸= 0 for any p > 3,

f5

(
−1

3
,
2

3

)
= 0,

f5

(
1

3
,
1

3

)
= 0,

f5

(
−1

3
,−1

3

)
= 0,

f5

(
2

3
,−1

3

)
= 0.
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So we drop (−3, 1) from the list of pairs. We now evaluate f6 at the remaining points.

f6(0, 0) = 0,

f6(1, 0) = 0,

f6(0, 1) = 0,

f6

(
−1

3
,
2

3

)
= 0,

f6

(
1

3
,
1

3

)
= 0,

f6

(
−1

3
,−1

3

)
= 0,

f6

(
2

3
,−1

3

)
= 0.

Here are the ordered pairs (y, z) for which we still need to find x for:

(y, z) = (0, 0),

(y, z) = (1, 0),

(y, z) = (0, 1),

(y, z) = (−1

3
,
2

3
),

(y, z) = (
1

3
,
1

3
),

(y, z) = (−1

3
,−1

3
),

(y, z) = (
2

3
,−1

3
).

Let’s find x for those (y, z) pairs. For (y, z) = (0, 0), equation f1 yields

x2 − x+ 2yz = 0 =⇒ x2 − x = 0 =⇒ x(x− 1) = 0,

which gives us the triples

(0, 0, 0) or (1, 0, 0).
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For (y, z) = (1, 0), from equation f1 = 0 gives us

x2 − x+ 2yz = 0 =⇒ x2 − x = 0 =⇒ x(x− 1) = 0,

which gives us the triples

(0, 1, 0) , (1, 1, 0).

From equation f3 = 0, we get x = 0, which gives us the triple

(0, 1, 0).

From equation f1 = 0, we get

x2 − x− 4

9
= 0.

Factoring the quadratic polynomial gives us the equation(
x− 4

3

)(
x+

1

3

)
= 0.

Therefore, we have

x = −1

3
, x =

4

3
.

This gives us the triples (
−1

3
,−1

3
,
2

3

)
and

(
4

3
,−1

3
,
2

3

)
.

From equation f2 = 0, we obtain the same result:

x = −1

3
, leading to the same triple

(
−1

3
,−1

3
,
2

3

)
.

From equation f3 = 0, we also get

x = −1

3
, leading to the same triple

(
−1

3
,−1

3
,
2

3

)
.

Let’s find x for (y, z) =
(
1
3
, 1
3

)
.

From equation f1 = 0, we obtain
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x2 − x+ 2yz = 0.

Substituting y = 1
3
and z = 1

3
, we get:

x2 − x+ 2

(
1

3
· 1
3

)
= 0,

which simplifies to

x2 − x+
2

9
= 0.

Factoring the quadratic polynomial gives us the equation(
x− 1

3

)(
x− 2

3

)
= 0,

which gives us the following two solutions for x:

x =
1

3
, x =

2

3
.

This gives us the triples: (
1

3
,
1

3
,
1

3

)
,

(
2

3
,
1

3
,
1

3

)
From equation f2 = 0, we get the same result:

x =
1

3
, leading to the same triple

(
1

3
,
1

3
,
1

3

)
.

From equation f3 = 0, we also find

x =
1

3
, leading to the same triple

(
1

3
,
1

3
,
1

3

)
.

Let’s find x for (y, z) =
(
−1

3
,−1

3

)
.

From equation f1 = 0, we get

x2 − x+ 2yz = 0.
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Substituting y = −1
3
and z = −1

3
, we get

x2 − x+ 2

(
−1

3
· −1

3

)
= 0,

which simplifies to

x2 − x+
2

9
= 0.

Factoring the quadratic polynomial gives us the equation(
x− 1

3

)(
x− 2

3

)
= 0,

which yields

x =
1

3
, x =

2

3
.

This gives the triples: (
1

3
,−1

3
,−1

3

)
,

(
2

3
,−1

3
,−1

3

)
.

From equation f2 and equation f3, we obtain the same result:

x =
1

3
, leading to the same triple:

(
2

3
,−1

3
,−1

3

)
.

(y, z) =
(
2
3
,−1

3

)
: We can solve for x From Equation (1):

x2 − x+ 2yz = 0.

Substituting y = 2
3
and z = −1

3
, we get:

x2 − x+ 2

(
2

3
· −1

3

)
= 0,

which simplifies to:

x2 − x− 4

9
= 0.

Factoring this quadratic polynomial gives us the equation(
x+

1

3

)(
x− 4

3

)
= 0,
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Therefore,

x = −1

3
, x =

4

3
.

This gives us the triples: (
−1

3
,
2

3
,−1

3

)
,

(
4

3
,
2

3
,−1

3

)
.

From Equations (2) and (3), we obtain the same result:

x = −1

3
, leading to the same triple:

(
−1

3
,
2

3
,−1

3

)
.

The triples we have are:

(0, 0, 0),

(1, 0, 0), (0, 1, 0), (0, 0, 1),

(1, 1, 0), (1, 0, 1), (0, 1, 1),(
−1

3
, −1

3
,
2

3

)
,

(
2

3
, −1

3
, −1

3

)
,

(
2

3
,
1

3
,
1

3

)
,(

−1

3
,
2

3
, −1

3

)
,

(
4

3
, −1

3
,
1

3

)
,

(
2

3
, −1

3
, −1

3

)
(
1

3
,
1

3
,
1

3

)
,

We need to find triples that are roots of equations 1, 2, and 3: Clearly, the following

triples are roots of f1, f2, and f3:

(0, 0, 0),

(1, 0, 0),

(0, 1, 0),

(0, 0, 1).
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A straightforward computation shows that the triple

(
−1

3
,−1

3
,
2

3

)
is also a root of f1,

f2, and f3.

Thus, its cyclic shifts are also roots:(
2

3
,−1

3
,−1

3

)
,(

−1

3
,
2

3
,−1

3

)
.

Similarly, a straightforward computation shows that(
1

3
,
1

3
,
1

3

)
.

We now have 8 triples that satisfy f1 = 0, f2 = 0, f3 = 0. They are

(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1),

(
−1

3
,−1

3
,
2

3

)
,

(
2

3
,−1

3
,−1

3

)
,

(
1

3
,
1

3
,
1

3

)
,

(
−1

3
,
2

3
,−1

3

)
.

Recall the triple (
4

3
,−1

3
,
2

3

)
.

For this triple, we have:

f2

(
4

3
,−1

3
,
2

3

)
=

20

9
̸= 0 when p > 3,

f3

(
4

3
,−1

3
,
2

3

)
= −10

9
when p > 3.

Thus, when p = 5, the triple becomes(
−1

3
,−1

3
,
2

3

)
,
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which we already have as a solution. Next, consider the triple(
4

3
,
2

3
,−1

3

)
.

For this triple, we have:

f2

(
4

3
,
2

3
,−1

3

)
= −10

9
when p > 3,

f3

(
4

3
,
2

3
,−1

3

)
=

20

9
̸= 0 when p > 3.

Thus, when p = 5, the triple becomes

(
−1

3
,
2

3
,−1

3

)
,

which we already have as a solution.

The triple (
2

3
,
1

3
,
1

3

)
f2

(
2

3
,
1

3
,
1

3

)
=

2

9
̸= 0 for any p > 3

f3

(
2

3
,
1

3
,
1

3

)
=

2

9
̸= 0 for any p > 3

which means it is not solutions to our system. The triple:(
1

3
,−1

3
,−1

3

)

f2

(
1

3
,−1

3
,−1

3

)
=

2

9
̸= 0 for any p > 3

f3

(
1

3
,−1

3
,−1

3

)
=

2

9
̸= 0 for any p > 3

which means it is not solutions to our system

69



The system:

x2 − x+ 2yz = 0

y2 − y + 2xz = 0

z2 − z + 2xy = 0

has exactly 8 solutions for any p > 3.

Remark 9.1. If one of the cyclic shifts of a triple is a solution, the other shifts are

also solutions.

9.0.2. p = 2. When p = 2, our system of equations becomes

Proof.

x2 − x = 0

y2 − y = 0

z2 − z = 0

Solving this system of equations in characteristic 2 gives us the following triples:

(0, 0, 0),

(1, 0, 0), (0, 1, 0), (0, 0, 1),

(1, 1, 0), (1, 0, 1), (0, 1, 1),

(1, 1, 1).

□

9.0.3. p = 3. The idempotents when p = 3 are

(0, 0, 0),

(1, 0, 0), (0, 1, 0), (0, 0, 1),
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10. Number of Idempotents in Quandle Rings

There are 3 quandles of order 3 up to isomorphism:

∗ 0 1 2

0 0 0 0

1 1 1 1

2 2 2 2

∗ 0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

∗ 0 1 2

0 0 0 0

1 2 1 1

2 1 2 2

Let’s name these quandles Q31, Q32, and Q33, respectively.

Question: How many idempotents do the quandle rings Zp[Q31], Zp[Q32] and Zp[Q33]

have?

Theorem 10.1. Number of idempotents in Zp[Q31] = p2 + 1.

Proof.

Q31 =

∗ X0 X1 X2

X0 X0 X0 X0

X1 X1 X1 X1

X2 X2 X2 X2

Let r = α0X0 + α1X1 + α2X2, and set r2 = r. That is,

(α0X0 + α1X1 + α2X2)
2 = α0X0 + α1X1 + α2X2.

(α0X0 + α1X1 + α2X2)
2 = (α0X0 + α1X1 + α2X2) · (α0X0 + α1X1 + α2X2)

= (α2
0 + α0α1 + α0α2)X0 + (α2

1 + α1α0 + α1α2)X1

+ (α2
2 + α2α0 + α2α1)X2

By comparing the coefficients, we obtain the following set of equations:

α2
0 + α0α1 + α0α2 = α0
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α2
1 + α1α0 + α1α2 = α1

α2
2 + α2α0 + α2α1 = α2

Let α0, α1, and α2 be x, y, and z, respectively. Then the above set of equations can

be written as

x2 − x+ xy + xz = 0

y2 − y + xy + yz = 0

z2 − z + xz + yz = 0

x · (x+ y + z − 1) = 0 ⇒ x = 0 or x+ y + z = 1,

y · (x+ y + z − 1) = 0 ⇒ y = 0 or x+ y + z = 1,

z · (x+ y + z − 1) = 0 ⇒ z = 0 or x+ y + z = 1.

We need to find (x, y, z) that satisfies

x = 0 or x+ y + z = 1,

y = 0 or x+ y + z = 1,

and

z = 0 or x+ y + z = 1.

Case 1: x = 0.

• 1.1 x = 0, y = 0

– 1.1.1 x = y = z = 0 (0, 0, 0)

– 1.1.2 x = 0, y = 0, x + y + z = 1 (0, 0, 1)
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• 1.2 x = 0, x + y + z = 1

– x = 0 and y + z = 1

– 1.2.1 x = 0, y + z = 1, z = 0 (0, 1, 0)

– 1.2.2 x = 0, y + z = 1 (0, y, z), where y + z = 1

Case 2: x ̸= 0.

• 2.1 x ̸= 0, y = 0.

– x ̸= 0, y = 0, x+ y + z = 1

(0, 0, z) where x+ z = 1

• 2.2 x ̸= 0, x+ y + z = 1, z ̸= 0.

– (x, y, 0) with x+ z = 1

Case 3: x ̸= 0, y ̸= 0, and z ̸= 0.

We have

• (0, 0, 0)

• (1, 0, 0), (0, 1, 0), (0, 0, 1)

• (0, y, z), where y + z = 1

• (x, 0, z), where x+ z = 1

• (x, y, 0), where x+ y = 1

• (x, y, z), where x+ y + z = 1 and x ̸= 0, y ̸= 0, and z ̸= 0

Any nonzero triple (a, b, c) of the system satisfies a + b + c ≡ 1 (mod p). Let’s start

counting the number of idempotents.

We always have the following four solutions: (0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)

We also have (0, y, z), (x, 0, z), (x, y, 0) with cyclic shifts.

Consider a triple (a, b, c). Assume that exactly one of a, b, and c is zero. Without loss

of generality (WLOG), say a = 0, so we have (0, b, c).

We want b+ c ≡ 1 (mod p).
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We can write such a triple as (0, a, p + 1 − a), where 2 ≤ a ≤ p − 1. Each a gives a

unique such triple. There are 3(p− 2) such triples due to cyclic shifts. So far, we have

3(p− 2) + 4 solutions, which simplifies to 3p− 2.

Let us count the solutions (x, y, z), where x ̸= 0, y ̸= 0, and z ̸= 0.

For a, there are (p − 1) choices. Once a is chosen, ∗ has only one choice because of

uniqueness.

In (2, a, ∗), a has (p− 2) choices because a cannot be p.

In (3, a, ∗), a has (p− 2) choices because a cannot be p− 2.

In (n, a, ∗), a has (p− 2) choices because a cannot be p− (n− 1).

Here are the patterns:

In (1, a, ∗), there are (p− 1) choices for the solution.

In (n, a, ∗), where 2 ≤ n ≤ p, there are (p− 2) choices for the solution. For n we have

(p − 2) choices because 2 ≤ n ≤ p. For triples of the form (n, a, ∗), where 2 ≤ n ≤ p,

we have a total of (p− 2)(p− 2) choices.

We now consider triples of the form (n, a, ∗), where 1 ≤ n ≤ p− 1.

Here, there are (p− 1) + (p− 2)(p− 2) such triples.

Let’s do the final counting.

Total number of triples: = (3p− 2) + (p− 1) + (p− 2)(p− 2)

= 2p+ (p− 2) + (p− 1) + (p− 2)(p− 2)

= 2p+ (p− 2) [1 + (p− 2)] + (p− 1)

= 2p+ (p− 2)(p− 1) + (p− 1)

= 2p+ (p− 1) [(p− 2) + 1]

= 2p+ (p− 1)(p− 1)

= 2p+ (p− 1)2 = 2p+ p2 − 2p+ 1 = p2 + 1
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□

Theorem 10.2. Number of idempotents in Zp[Q33] = 2p.

Proof.

Q33 =


0 0 0

2 1 1

1 2 2

 Q33 =


x0 x0 x0

x2 x1 x1

x1 x2 x2


Consider an arbitrary element a in the quandle ring, say a = α0x0+α1x1+α2x2, where

a ∈ Zp[Q33].

Set a2 = a.

(α0x0 + α1x1 + α2x2)
2 = (α0x0 + α1x1 + α2x2)(α0x0 + α1x1 + α2x2)

= (α2
0 + α1α2 + α2α1)x0 + (α2

1 + α0α2 + α2α0)x1

+ (α2
2 + α0α1 + α1α0)x2

α2
0 + α1α2 + α2α1 = α0

α2
1 + α0α2 + α2α0 = α1

α2
2 + α0α1 + α1α0 = α2

α2
0 − α0 + α1α2 + α2α1 = 0 (1)(10.1)

α2
1 − α1 + α0α2 + α2α0 = 0 (2)(10.2)

α2
2 − α2 + α0α1 + α1α0 = 0 (3)(10.3)

From (1):

α0(α0 + α1 + α2 − 1) = 0 ⇒ α0 = 0 or α0 + α1 + α2 = 1
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α1(α1 + α2 − 1) + α0α2 = 0

α2(α2 + α1 − 1) + α0α1 = 0

So:

α0 = 0 or α0 + α1 + α2 = 1 and

Case: α0 = 0

α1(α1 + α2 − 1) = 0 ⇒ α1 = 0 or α1 + α2 = 1

1.1:

α0 = 0, α1 = 0 ⇒ α2 = 0 or α2 = 1 ⇒ (0, 0, 0) or (0, 0, 1)

1.2:

α0 = 0, α1 + α2 = 1 ⇒ (0, α1, α2) with α1 + α2 = 1

Case 2

α0 + α1 + α2 = 1

α1 + α2 = 1− α0

From (2) ⇒ α1(1− α0 − α1) + α0α2 = 0

⇒ −α2
1 + α2α0 = 0

⇒ α1(α2 − α0) = 0

⇒ α1 = 0 or α2 = α0

(α0, α1, α2)
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2.1 α1 = 0, α0 + α2 = 1

(0, 0, α2), where α0 + α2 = 1

2.2 α0 + α1 + α2 = 1, α2 = α0

(α0, α1, α0), where α0 + α1 + α0 = 1

⇒ 2α0 + α1 = 1

From (3):

α2(−α0) + α0α1 = 0

−α0α2 + α0α1 = 0

α0(α1 − α2) = 0 ⇒ α0 = 0 or α1 = α2

Always solutions:

(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0)

(0, α1, α2), with α1 + α2 = 1

(α0, α1, α2), where α0 + α1 + α2 = 1, α1 = α2, and α0, α1, α2 ̸= 0

Note: (0, 0, 0) is 1 triple.

Always solutions:

(0, 0, 1), (0, 1, 0), (1, 0, 0) — 3 triples

Triples of the form (0, α1, α2), α1 + α2 = 1
77



Once you choose α1, then α2 is fixed.

There are (p− 2) choices for α1 because

1 ≤ α1 ≤ p− 1

Triples of the form (α0, α1, α2), α1 = α2, α0 + α1 + α2 = 1

With the additional condition: none of them is zero.

We are looking at triples of the form

(a, b, b) with a+ 2b = 1, none of them is zero

Once you choose a, then b is fixed.

There are (p− 2) choices for a since

2 ≤ a ≤ p− 1

Note: a cannot be 1 because in that case b = 0

Total number of idempotents:

= 1 + 3 + (p− 2) + (p− 2)

= 2p

□

What about Zp[Q32]?
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p Quandle Number of Idempotents

2 Q 32 8

3 Q 32 4

p > 3 Q 32 8

2 Q 51 12

3 Q 51 12

5 Q 51 6

p > 5 Q 51 12

2 Q 52 12

3 Q 52 12

5 Q 52 6

p > 5 Q 52 12

11. Idempotents in Zp[Q], where |Q| > 3

In this section, we generalize our results in the previous section to any quandle ring

where the quandle is of prime order. There are p− 2 connected quandles of order p up

to isomorphism: 1 connected quandle of order 3, 3 connected quandles of order 5, 5

connected quandles of order 7, and so on. We have listed the only connected quandles of

order 3, and two connected quandles of order 3 and 7, each. Our computational results

show that there are two connected quandles of order p > 3 up to isomorphism whose

polynomial coefficients in Gröbner basis can be written in terms of the cardinality of

the quandle. Interestingly, polynomial coefficients in the Gröbner basis when p = 3

follows the same pattern.

∗ 0 1 2

0 0 2 1

1 2 1 0

2 1 0 2

∗ 0 1 2 3 4

0 0 3 4 2 1

1 2 1 3 4 0

2 1 4 2 0 3

3 4 0 1 3 2

4 3 2 0 1 4

∗ 0 1 2 3 4

0 0 3 4 1 2

1 2 1 0 4 3

2 3 4 2 0 1

3 4 2 1 3 0

4 1 0 3 2 4
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∗ 0 1 2 3 4 5 6

0 0 4 1 5 2 6 3

1 4 1 5 2 6 3 0

2 1 5 2 6 3 0 4

3 5 2 6 3 0 4 1

4 2 6 3 0 4 1 5

5 6 3 0 4 1 5 2

6 3 0 4 1 5 2 6

∗ 0 1 2 3 4 5 6

0 0 5 3 1 6 4 2

1 3 1 6 4 2 0 5

2 6 4 2 0 5 3 1

3 2 0 5 3 1 6 4

4 5 3 1 6 4 2 0

5 1 6 4 2 0 5 3

6 4 2 0 5 3 1 6

Let Q be one of those quandles from the previous two slides. Then the one variable

polynomial in Gröbner basis is of the form

p(t) = |Q|3t5 − (2|Q|3 − |Q|2)t4 + (|Q|3 − |Q|2 − |Q|)t3 + (2|Q| − 1)t2 + (1− |Q|)t,

where |Q| is the cardinality of the quandle Q.

Factorization of p(t):

p(t) = t · (t− 1) · (|Q|t− (|Q| − 1)) · (|Q|t− 1) · (|Q|t+ 1)

Here are some of the other polynomials in the Gröbner basis needed to find all the

solutions of the system of polynomial equations:

P (t) = −|Q|3t4+(|Q|3+ |Q|(|Q|−2))t3+(|Q|(|Q|−1)(|Q|−2))t2r+(|Q|(4−|Q|)−2)t2+(|Q|−1)(|Q|−2)tr+2(1−|Q|)t

P (t) = −|Q|3t4+(|Q|3+ |Q|(|Q|−2))t3+(|Q|(|Q|−1)(|Q|−2))t2z+(|Q|(4−|Q|)−2)t2+(|Q|−1)(|Q|−2)tz+2(1−|Q|)t

P (t) = −|Q|3t4+(|Q|3+ |Q|(|Q|−2))t3+(|Q|(|Q|−1)(|Q|−2))t2y+(|Q|(4−|Q|)−2)t2+(|Q|−1)(|Q|−2)ty+2(1−|Q|)t

Due to computational complexity of computing Gröbner basis when |Q| ≥ 7, for the

rest of the section, we focus on connected quandles of order 5. There are 3 connected

quandles of order 5 (up to isomorphism) which we name Q51, Q52, and Q53. We first

focus on the quandle rings where the quandles are Q51 and Q52.

11.1. The idempotent elements in quandle rings Zp[Q51] and Zp[Q52]. Here are

our multiplication tables for quandles of Q51 and Q52.
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▷ 0 1 2 3 4

0 0 3 4 2 1

1 2 1 3 4 0

2 1 4 2 0 3

3 4 0 1 3 2

4 3 2 0 1 4

▷ 0 1 2 3 4

0 0 3 4 1 2

1 2 1 0 4 3

2 3 4 2 0 1

3 4 2 1 3 0

4 1 0 3 2 4

Now we need to have the systems of equations to solve for the idempotent elements

in quandles Q51 and Q52.

Here are the systems of equations solving for idempotents in Q51 and Q52 respec-

tively 

x2 − x+ yz + yt+ zr + rt = 0,

xr + xt+ y2 − y + zr + zt = 0,

xy + xt+ yr + z2 − z + rt = 0,

xy + xz + yt+ zt+ r2 − r = 0,

xz + xr + yz + yr + t2 − t = 0.

x2 − x+ yr + yt+ zr + zt = 0,

xz + xt+ y2 − y + zr + rt = 0,

xy + xr + yt+ z2 − z + rt = 0,

xy + xt+ yz + zt+ r2 − r = 0,

xz + xr + yz + yr + t2 − t = 0.
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The two systems of equations have the same Gröbner Basis given below.

{−4t+ 9t2 + 95t3 − 225t4 + 125t5,

− 8t+ 12rt− 7t2 + 60rt2 + 140t3 − 125t4,

− 12r + 12r2 + 18t− 24rt+ 7t2 − 150t3 + 125t4,

− 8t− 7t2 + 140t3 − 125t4 + 12tz + 60t2z,

6t− 24rt+ 19t2 − 150t3 + 125t4 + 24rz − 24tz,

18t+ 7t2 − 150t3 + 125t4 − 12z − 24tz + 12z2,

− 8t− 7t2 + 140t3 − 125t4 + 12ty + 60t2y,

6t− 24rt+ 19t2 − 150t3 + 125t4 + 24ry − 24ty,

6t+ 19t2 − 150t3 + 125t4 − 24ty − 24tz + 24yz,

18t+ 7t2 − 150t3 + 125t4 − 12y − 24ty + 12y2,

− 12t+ 12rt− 13t2 + 150t3 − 125t4 + 12tx+ 12ty + 12tz,

− 18t− 7t2 + 150t3 − 125t4 + 24rx+ 24ty + 24tz,

− 18t+ 24rt− 7t2 + 150t3 − 125t4 + 24ty + 24tz,

− 18t+ 24rt− 7t2 + 150t3 − 125t4 + 24ty + 24tz,

− 6t+ 24rt− 19t2 + 150t3 − 125t4 − 12x+ 12x2 + 24ty + 24tz}

To find out the idempotent elements we should find the solutions to this system of

equations above.

We factoriaze the −4t+ 9t2 + 95t3 − 225t4 + 125t5 in order to solve z first.

−4t+ t2 + t3 − 225t4 + 125t5
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−4t+ 9t2 + 95t3 − 225t4 + 125t5

= t(t− 1)(5t− 4)(5t− 1)(t+ 1)

t = 0, t = 1, t =
4

5
, t =

1

5
, t = −1

5

Now we need to plug in the z values to other equations to solve the other variables.

−12r + 12r2 + 18t− 24rt+ 7t2 − 150t3 + 125t4 = 0

t = 0 : −12r2 + 12t = 0 ⇒ 12t(t− 1) = 0 ⇒ t = 1 or t = 0

t = 1 : −12r2 + 36t = 0 ⇒ 12t(t− 3) ≥ 0 ⇒ t = 3 or

t = 4/5 : t = −1/5 or t = 2.8

t = 1/5 : t = 1/5 or t = 6/5

t = −1/5 : t = −1/5 or t = 4/5

Since −12r+12r2+18t− 24rt+7t2− 150t3+125t4 = 0, −12y+12y2+18t− 24yt+

7t2 − 150t3 +125t4 = 0 and −12z+12z2 +18t− 24zt+7t2 − 150t3 +125t4 = 0 are the

same type of polynomial. We can get the same value for y and z for the same t.

Now we can use

f(t, r) = −8t+ 12rt− 7t2 + 60rt2 + 140t3 − 125t4
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To check:

t = 0, r ≥ 1 f(t, r) = 0 ✓

r = 0 f(t, r) = 0 ✓

t = 1, r ≥ 0

r = 1 f(t, r) = −8 + 12− 7 + 60− 128 = 0 ✓

f(t, r) = −8 + 12− 7 + 60 + 14− 128 = 72 ×

t =
4

5
, r = −1

5
f(t, r) = 0✓

r = 2.8 f(t, r) = 144 ×

t =
1

5
, r =

1

5
f(t, r) = 0 ✓

r = 1.2 f(t, r) = 48 ×

Using the same way, we can also rule out some values for y and z. Now the values for

t, r, z, y are in the table below.
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t r y z

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

4
5

−1
5

−1
5

−1
5

1
5

1
5

1
5

1
5

−1
5

−1
5

−1
5

−1
5

−1
5

4
5

−1
5

−1
5

−1
5

4
5

4
5

−1
5

−1
5

−1
5

−1
5

4
5

−1
5

−1
5

4
5

−1
5

−1
5

−1
5

4
5

4
5

−1
5

4
5

4
5

4
5

−1
5

−4
5

−1
5

4
5

Now, we still can rule out some of these values by plug the (t, r, y, z) above into

f1 = 6t− 24rt+ 19t2 − 150t3 + 125t4 + 24rz − 24tz,

f2 = 6t− 24rt+ 19t2 − 150t3 + 125t4 + 24ry − 24ty,

and

f3 = 6t+ 19t2 − 150t3 + 125t4 − 24ty − 24tz + 24yz.
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t r y z f1 f2 f3

0 0 0 0 ✓ ✓ ✓

0 0 0 1 ✓ ✓ ✓

0 0 1 0 ✓ ✓ ✓

0 0 1 1 ✓ × ✓

0 1 1 0 × × ×

0 1 1 1 × ✓ ✓

0 1 0 0 ✓ ✓ ✓

1 0 0 0 ✓ ✓ ✓

0 1 0 1 ✓ ✓ ×
4
5

−1
5

−1
5

−1
5

✓ ✓ ✓

1
5

1
5

1
5

1
5

✓ ✓ ✓

−1
5

−1
5

−1
5

−1
5

✓ ✓ ✓

−1
5

4
5

−1
5

−1
5

✓ ✓ ✓

−1
5

4
5

−4
5

−1
5

× ✓ ✓

−1
5

−1
5

−1
5

4
5

✓ ✓ ✓

−1
5

−1
5

4
5

−1
5

✓ ✓ ✓

−1
5

−1
5

4
5

4
5

✓ × ✓

−1
5

4
5

4
5

4
5

× × ×

−1
5

−4
5

−1
5

4
5

✓ ✓ ×

Next we will use the (t, r, z, y) values above and plug them into

−6t+ 24rt− 19t2 + 150t3 − 125t4 − 12x+ 12x2 + 24ty + 24tz

to solve for x.
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t r y z x

0 0 0 0 1, 0

0 0 0 1 1, 0

0 0 1 0 1, 0

0 1 0 0 1, 0

4
5

−1
5

−1
5

−1
5

−1
5
, 6
5

1
5

1
5

1
5

1
5

1
5
, 4
5

−1
5

4
5

−1
5

−1
5

−1
5
, 6
5

−1
5

−1
5

−4
5

−1
5

−1
5
, 6
5

−1
5

−1
5

−1
5

4
5

−1
5
, 6
5

−1
5

−1
5

−1
5

4
5

6
5
, 1
5

Now we let

f4 = −18t− 7t2 + 150t3 − 125t4 + 24rx+ 24ty + 24tz,

f5 = −18t+ 24rt− 7t2 + 150t3 − 125t4 + 24ty + 24tz,

and

f6 = −18t+ 24rt− 7t2 + 150t3 − 125t4 + 24ty + 24tz,

and use the 3 equations to check all (t, r, z, y, x) values above.
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t r y z x f4 f5 f6

0 0 0 0 1 ✓ ✓ ✓

0 0 0 0 0 ✓ ✓ ✓

0 0 0 1 1 ✓ × ✓

0 0 0 1 0 ✓ ✓ ✓

0 0 1 0 1 ✓ ✓ ×

0 0 1 0 0 ✓ ✓ ✓

0 1 0 0 1 × ✓ ✓

0 1 0 0 0 ✓ ✓ ✓

4
5

−1
5

−1
5

−1
5

−1
5

✓ ✓ ✓

4
5

−1
5

−1
5

−1
5

6
5

× × ×
1
5

1
5

1
5

1
5

1
5

✓ ✓ ✓

1
5

1
5

1
5

1
5

4
5

× × ×

−1
5

4
5

−1
5

−1
5

−1
5

✓ ✓ ✓

−1
5

4
5

−1
5

−1
5

6
5

× × ×

−1
5

−1
5

−4
5

−1
5

−1
5

✓ ✓ ✓

−1
5

−1
5

−4
5

−1
5

6
5

× × ×

−1
5

−1
5

−1
5

4
5

−1
5

✓ ✓ ✓

−1
5

−1
5

−1
5

4
5

6
5

× × ×

−1
5

−1
5

−1
5

−1
5

1
5

× × ×

−1
5

−1
5

−1
5

4
5

1
5

✓ ✓ ✓

The idempotents of quandle rings Zp[Q51] and Zp[Q52] are

(0, 0, 0, 0, 0)(1
5
,
1

5
,
1

5
,
1

5
,
1

5

)
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(4
5
,−1

5
,−1

5
,−1

5
,−1

5

)
,
(
− 1

5
,
4

5
,−1

5
,−1

5
,−1

5

)
,(

− 1

5
,−1

5
,−4

5
,−1

5
,−1

5

)
,
(
− 1

5
,−1

5
,−1

5
,
4

5
,−1

5

)
,
(
− 1

5
,−1

5
,−1

5
,−1

5
,
4

5

)
(1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1)

11.2. Number of idempotents in quandle ring Zp[Q53]. Q53 is the symmetric

connected quandle of order 5.

▷ 0 1 2 3 4

0 0 3 1 4 2

1 3 1 4 2 0

2 1 4 2 0 3

3 4 2 0 3 1

4 2 0 3 1 4

The number of idempotents in the quandle ring Zp[Q53] for different p values is given

in the following table.

p Quandle Number of Idempotents

2 Q 53 32

3 Q 53 12

5 Q 53 6

( p
15 ) = 1 Q 53 32

( p
15 ) = -1 Q 53 12
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Appendix

Groups. A group is a set G with a binary operation · that combines any two elements

a and b to form another element denoted a · b. The set and operation, (G, ·), must

satisfy four fundamental properties known as the group axioms:

(1) Closure: For all a, b ∈ G, the result of the operation a · b is also in G.

∀a, b ∈ G, a · b ∈ G

(2) Associativity: For all a, b, c ∈ G, the equation (a · b) · c = a · (b · c) holds.

∀a, b, c ∈ G, (a · b) · c = a · (b · c)

(3) Identity Element: There exists an element e ∈ G such that for every element

a ∈ G, the equation e · a = a · e = a holds.

∃e ∈ G such that ∀a ∈ G, e · a = a · e = a

(4) Inverse Element: For each a ∈ G, there exists an element b ∈ G such that

a · b = b · a = e, where e is the identity element.

∀a ∈ G, ∃b ∈ G such that a · b = b · a = e

Dihedral Groups. The dihedral group Dn is an non-abelian group n ∈ Z which contain

the group of symmetries of a regular polygon with n sides. This is a group with order

2n includes n rotations and n reflections. The group can be presented in terms of
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generators and relations as follows:

Dn = ⟨r, s | rn = s2 = 1, srs = r−1⟩

where r represents a rotation by 360◦

n
(or 2π

n
radians), and s represents a reflection

across a line that passes through one vertex and the center of the polygon.

Rings. A Ring is a set R equipped with two binary operations: addition (+) and

multiplication (·) such that:

(1) (R,+) is an abelian group:

(2) Closure: For all a, b ∈ R, a+ b ∈ R

(3) Associativity: (a+ b) + c = a+ (b+ c)

(4) Identity: There exists 0 ∈ R such that a+ 0 = a

(5) Inverses: For every a ∈ R, there exists −a ∈ R such that a+ (−a) = 0

(6) (iv) Commutativity: a+ b = b+ a

(7) Multiplication is associative: For all a, b, c ∈ R, (a · b) · c = a · (b · c)

(8) Distributive laws hold:

• Left distributive: a · (b+ c) = a · b+ a · c

• Right distributive: (a+ b) · c = a · c+ b · c

If the ring also satisfies:

• Multiplicative identity: There exists 1 ∈ R such that 1 · a = a · 1 = a

then it is called a ring with unity or a unital ring.

If multiplication is also commutative (a · b = b · a), then it is called a commutative

ring.

Example 11.1. The set of integers Z with the usual addition and multiplication is a

commutative ring with unity.

Legendre symbol. Let p denote an odd prime. Then the Legendre symbol
(

a
p

)
is

defined by
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(
a

p

)
=


1 if a is a quadratic residue modulo p,

−1 if a is a quadratic nonresidue modulo p,

0 if a is a multiple of p.

Jacobi symbol. Let n ∈ Z+, and let

n = pe11 pe22 · · · pemm

be its prime factorization.

Let a ∈ Z such that gcd(a, n) = 1. Then the Jacobi symbol
(
a
n

)
is defined by:

(a
n

)
=

(
a

pe11 pe22 · · · pemm

)
=

(
a

p1

)e1 ( a

p2

)e2

· · ·
(

a

pm

)em

where the symbols on the right-hand side are Legendre symbols.
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