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Central Configurations

The gravitational force on each body points toward the center of mass
and is proportional to the distance from the center of mass.
Figures by Rick Moeckel (2014), Scholarpedia, 9(4):10667.
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3-Body Collinear Configurations (Euler 1767)
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For each ordering of n arbitrary masses on a line, there exists a unique
central configuration (Moulton, 1910).
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Equilateral Triangle (Lagrange 1772)

The equilateral triangle is a central configuration for any choice of
masses.
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Regular n-gon (equal mass required for n ≥ 4)

w

w

w

w

w

w

w

w

�
�
�
��

�
�
�
��@

@
@
@@

@
@
@
@@

Roberts (Holy Cross) Kite Central Configurations HC Faculty Seminar 5 / 40



1 + n-gon (arbitrary central mass)
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Used by Sir James Clerk Maxwell in 1859 in Stability of the Motion of
Saturn’s Rings (winner of the Adams Prize).
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Released from rest, a central configuration maintains the same shape
as it heads toward total collision (homothetic motion).
Simulation by Rick Moeckel (2014), Scholarpedia, 9(4):10667.
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Given the correct initial velocities, a central configuration will rigidly
rotate about its center of mass. Such a solution is called a relative
equilibrium.
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Any Kepler orbit (elliptic, hyperbolic, ejection-collision) can be attached
to a central configuration to obtain a solution to the full n-body
problem. Above is an example of an asymmetric 8-body c.c. with
elliptic homographic motion (eccentricity 0.8).
Simulation by Rick Moeckel (2014), Scholarpedia, 9(4):10667.
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Figure: The five libration points (Lagrange points) in the Sun-Earth system
(not drawn to scale). In general, L4 and L5 are linearly stable provided the
ratio msun/mp is sufficiently large. These make great “parking spaces.” Many
solar observatories (e.g., SOHO) and satellites (e.g., Planck) are located at or
around L1 or L2.
Source: https://webb.nasa.gov/content/about/orbit.html
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Figure: Weather research and forecasting model from the National Center for
Atmospheric Research (NCAR) showing the field of precipitable water for
Hurricane Rita (2005). Note the presence of three maxima near the vertices
of an equilateral triangle contained within the hurricane’s “polygonal” eyewall.
http://www.atmos.albany.edu/facstaff/kristen/wrf/wrf.html
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Figure: Saturn’s North Pole and its encircling hexagonal cloud structure. First
photographed by Voyager in the 1980’s and here again recently by the
Cassini spacecraft – a remarkably stable structure!
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Definition
A planar central configuration (c.c.) is a configuration of bodies
x = (x1, x2, . . . , xn), xi ∈ R2 such that the acceleration vector for each
body is a common scalar multiple of its position vector (with respect to
the center of mass). Specifically, in the Newtonian n-body problem with
center of mass c, for each index i , ∂U

∂qi
(x) = −λmi(xi − c) or

n∑
j 6=i

mimj(xj − xi)

r3
ij

+ λmi(xi − c) = 0

for some scalar λ independent of i , where rij = ||xj − xi ||.

U(q) =
n∑

i<j

mimj

rij
is the Newtonian potential function.

Finding c.c.’s is an algebra problem — no dynamics or derivatives.
Summing together the n equations above quickly yields
c = 1

M
∑

mixi , where M =
∑

mi is the total mass.
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Properties of Central Configurations
Released from rest, a c.c. maintains the same shape as it heads
toward total collision (homothetic motion).

Given the correct initial velocities, a c.c. will rigidly rotate about its
center of mass. Such a solution is called a relative equilibrium.

Any Kepler orbit (elliptic, hyperbolic, ejection-collision) can be
attached to a c.c. to obtain a solution to the full n-body problem.

For any collision orbit in the n-body problem, the colliding bodies
asymptotically approach a c.c.

Bifurcations in the topology of the integral manifolds in the planar
problem (holding hc2 constant where h is the value of the energy
and c is the length of the angular momentum vector) occur
precisely at values corresponding to central configurations.

421 articles found on MathSciNet using a general search for
"central configurations" and MSC 70F
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Symmetries

Suppose that x ∈ R2n is a central configuration. The following are also
central configurations:

1 kx = (kx1, . . . , kxn) for any k > 0 (scaling; c 7→ kc, λ 7→ λ/k3)

2 x − s = (x1 − s, . . . , xn − s) for any s ∈ R2 (translation; c 7→ c − s)

3 Ax = (Ax1, . . . ,Axn) where A ∈ SO(2) (rotation; c 7→ Ac)

Thus, central configurations are not isolated. It is standard practice to
fix a scaling and center of mass c, and then identify solutions that are
equivalent under a rotation.

Note: Reflections of x are also central configurations (e.g., multiplying
the first coordinate of c and each xi by −1), but these are regarded as
distinct solutions.
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An Alternate Characterization of CC’s

The system of equations defining a central configuration can be written
more compactly as

∇U(x) + λ∇I(x) = 0, (1)

where I is one half the moment of inertia, I = 1
2
∑n

i=1 mi ||qi − c||2.

Thus, a central configuration is a critical point of U subject to the
constraint I = k (the mass ellipsoid). This gives a useful topological
approach to studying central configurations (Smale, Conley, Meyer,
McCord, Moeckel, Ferrario, etc.)

Smale/Wintner/Chazy Question: For a fixed choice of masses, is the
number of equivalence classes of planar central configurations finite?
(Smale’s 6th problem for the 21st century)
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Finiteness Question

n = 3 5 total Euler (1767), Lagrange (1772)

Collinear n!/2 Moulton (1910)

4 equal masses 50 total Albouy (1995)

n = 4 Finite, 32 – 8472 Hampton and Moeckel (2006)
using BKK Theory

5 equal masses 207 total Lee and Santoprete (2009)
using the polyhedral homotopy
method (HOM4PS-2.0)

n = 5 Albouy and Kaloshin (2012). Finiteness shown for all
masses except for a codimension 2 subvariety.

n ≥ 6 Open problem!
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A Continuum of Central Configurations
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Theorem (GR, 1999)
There exists a continuum of c.c.’s in the planar 5-body problem with
masses m1 = m2 = m3 = m4 = 1 and m5 = −1/4. The equal masses
lie at the vertices of a rhombus and the negative mass is located at the
center. The side length remains constant throughout the continuum
(triple collision occurs at either ends).
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Four-body CC’s

A four-body planar c.c. is called convex if no body lies within the
convex hull of the other three. If the configuration is not convex, it
is called concave.

MacMillan and Bartky (1932) proved that for any choice of four
masses and for any ordering, there exists a convex c.c. Later, Xia
(2004) gave a simpler proof of this fact. Hampton (2002) proved
that concave c.c.’s exist for any choice of masses in his doctoral
thesis.

Symmetry: For a convex c.c., if two opposite masses are equal,
then the configuration contains a line of symmetry, called a kite
configuration (Albouy, Fu, and Sun, 2007). If there are two pairs of
equal masses located at two adjacent vertices, then the
configuration must be an isosceles trapezoid (Fernandes, Llibre,
and Mello, 2017).
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Kites

Figure: Two kite central configurations with different symmetry axes. On the
left, we must have m2 = m4, while on the right we have m1 = m3.
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Rhombii

Figure: A rhombus central configuration. The rhombii occur at the intersection
of the two types of kites. We must have two pairs of opposite equal masses,
m1 = m3 and m2 = m4.
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Other Examples

Figure: A trapezoidal c.c. (left) and a co-circular c.c. (right), where the bodies
lie on a common circle. Santoprete (2021) has shown that in each case, for a
choice of masses where the particular c.c. exists, it is unique (for a fixed
ordering of the bodies).
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Open problem: Show that there is a unique convex central
configuration for any fixed choice of positive masses in a prescribed
order. This is Problem #10 on a published list of open problems in
celestial mechanics by Albouy, Cabral, and Santos (2012).

Leandro (2003) proved uniqueness for the convex kite c.c.’s using
resultants and the method of rational parametrization.

Corbera, Cors, and GR (2019) classified the full set of convex
c.c.’s (with a focus on symmetric or special geometric
configurations) showing the set is three-dimensional.

Santoprete (2021) proved uniqueness for trapezoidal and
co-circular c.c.’s.

Sun, Xie, and You (2023) gave a numerical computer-assisted
proof using interval arithmetic and the Krawczyk Operator for
uniqueness on a large subset of masses bounded away from 0.
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Research Questions

Goal: Investigate the convex and concave kite c.c.’s for a particular
ordering of the bodies, assuming the masses off the line of symmetry
are equal.

Find a “simple,” topological argument to prove uniqueness in the
convex setting.

Is it possible to give a geometric construction of a convex kite c.c.,
and in the process prove uniqueness?

Why does the argument break down in the concave case?

Linear stability of the corresponding relative equilibria solutions?
How does this depend on the masses and the type of
configuration?

Four-vortex version of the above?
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Mutual Distances in the Four-body Problem

Treating the six mutual distances r12, r13, r14, r23, r24, r34 as variables, a
central configuration is a critical point of

U − λ(I − I0)−
µ

32
V

subject to the constraints I = I0 and V = 0, where I = 1
2M
∑

i<j mimj r2
ij ,

and V is the Cayley-Menger determinant

V =

∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 1

1 0 r2
12 r2

13 r2
14

1 r2
12 0 r2

23 r2
24

1 r2
13 r2

23 0 r2
34

1 r2
14 r2

24 r2
34 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Key Formula: ∂V
∂r2

ij
= −32 AiAj where Ai is the signed area of the

triangle whose vertices contain all bodies except for the i th body.
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Dziobek’s Equations

m1m2(r−3
12 − λ

′) = σA1A2 m3m4(r−3
34 − λ

′) = σA3A4

m1m3(r−3
13 − λ

′) = σA1A3 m2m4(r−3
24 − λ

′) = σA2A4

m1m4(r−3
14 − λ

′) = σA1A4 m2m3(r−3
23 − λ

′) = σA2A3

where λ′ and σ are re-scaled Lagrange multipliers.

This leads to the famous equations of Dziobek (1900):

(r−3
12 − λ

′)(r−3
34 − λ

′) = (r−3
13 − λ

′)(r−3
24 − λ

′) = (r−3
14 − λ

′)(r−3
23 − λ

′)

Necessary and Sufficient: If these last equations are satisfied for a
planar configuration, then the ratios of the masses can be obtained by
dividing appropriate pairs in the first list. However, positivity of the
masses must still be checked.
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Relationships between the mutual distances

In the convex case, two areas are positive and two are negative (e.g.,
A1,A3 > 0,A2,A4 < 0). Requiring positivity of the masses enforces the
following requirements on the mutual distances:

The diagonals must be longer than all exterior sides.

The longest and shortest exterior sides are opposite each other.

Simple Consequence: The only possible rectangular c.c. is a square,
and the only possible parallelogram is a rhombus.

Assuming that the bodies are ordered sequentially in a
counter-clockwise fashion and that r12 is the longest exterior
side-length, we have the following inequalities:

r13, r24 > (λ′)−1/3 > r12 ≥ r14, r23 ≥ r34
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Steps for Proving Uniqueness for Convex Kites

1 Replace the Caley-Menger determinant by a simpler constraint
function F that leads to a c.c. when restricted to the set of mutual
distances satisfying r12 = r14 and r23 = r34.

2 Reduce the dimension of the problem by finding good coordinates
for the space. The problem is then recast as finding the critical
points of a function on the surface of an ellipsoid.

3 Give a simple topological argument to prove that a critical point
must exist.

4 Hard part: Show that any convex critical point must be a minimum.
This involves showing that the 2× 2 Hessian restricted to the
tangent space at a critical point is positive definite.

5 Use basic Morse Theory to conclude that there can only be one
such critical point, thereby verifying uniqueness.
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Normalized Configuration Space

Assume m2 = m4 = m and M = m1 + m3 + 2m = 1.

Let r = (r12, r13, r14, r23, r24, r34) ∈ (R+)6 and define the normalized
configuration space

N = {r ∈ (R+)6 : I(r) = 1,F (r) = 0, r12 = r14, and r23 = r34},

where

F = r2
13(r

2
12 + r2

14 + r2
23 + r2

34 − r2
13 − r2

24)− (r2
12 − r2

23)(r
2
14 − r2

34) .

Key Facts about F :

F is derived from the geometry of the kite (Pythagorean Theorem).
F is homogeneous of degree 4.
r ∈ N implies V (r) = 0 so the configuration is planar.
r ∈ N implies ∇V (r) = 2r2

24∇F (r) so the gradients of F and the
Cayley-Menger determinant are parallel when restricted to N .
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Critical Points on N

N = {r ∈ (R+)6 : I(r) = 1,F (r) = 0, r12 = r14, and r23 = r34}

Equality of the two pairs of mutual distances means that N consists of
kite configurations (convex or concave) with m1 and m3 on the axis of
symmetry and the bodies ordered consecutively in the CC or CCW
direction: 1, 2, 3, 4.

Lemma
r ∈ N is a kite c.c. with a consecutive ordering iff r is a critical point of
U restricted to N .

Key idea: Show that critical points of U on the reduced space N are
also critical points in the full problem, and are therefore central
configurations.
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Local Coordinates on N

Coordinates: (a,b, c) ∈ R3 describe points in N provided

I = (m1m +
m1m3

2
)a2 + (m3m +

m1m3

2
)b2 + m1m3ab + mc2 = 1 .

ab > 0 =⇒ convex ab < 0 =⇒ concave
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Local Coordinates on N (cont.)

The configuration space is the ellipsoid

C = {(a,b, c) ∈ R3 : I(a,b, c) = 1}.

Kite central configurations (convex or concave) are critical points of U
restricted to the ellipsoid C.

Different signs for a,b, c lead to different orderings of the bodies (or
which body is in the interior for the concave case). Focusing on the
convex case, wlog, we assume that a,b, c ≥ 0.

r2
12 = a2 + c2 r2

23 = b2 + c2

r13 = a + b r24 = 2c
r14 = r12 r34 = r23

U =
2m1m

r12
+

2m3m
r23

+
m1m3

r13
+

m2

r24
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C.C. Equations in New Coordinates

∇U + λ∇I = 0 yields

2ma(r−3
12 − λ) = m3(a + b)(λ− r−3

13 )

2mb(r−3
23 − λ) = m1(a + b)(λ− r−3

13 )

λ = m1r−3
12 + m3r−3

23 + 2mr−3
24

r12 = (a2 + c2)1/2

r23 = (b2 + c2)1/2

r13 = a + b
r24 = 2c

I = 1
m1 + m3 + 2m = 1

Symmetry: a 7→ b,m1 7→ m3 Useful in computations.
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Tangent Space

Recall: I = (m1m + m1m3
2 )a2 + (m3m + m1m3

2 )b2 + m1m3ab + mc2 = 1 .

We have ∇I = (m1(a− x), m3(b + x), 2mc),

where x = m1a−m3b is the first coordinate of the center of mass.

Define the vectors

v1 = [2mc, 0, −m1(a− x)]T

v2 = [0, 2mc, −m3(b + x)]T .

Since these vectors are linearly independent and satisfy ∇I · vi = 0,
they form a basis for the tangent space to the ellipsoid C defined by
I = 1.
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Existence of Convex Kite C.C.’s
Consider the space C′ = {(a,b, c) ∈ R3 : a,b, c ≥ 0, I(a,b, c) = 1}.

Theorem (Existence)
Fix a choice of positive masses. The function U restricted to I = 1
attains a local minimum in the interior of C′. Consequently, there exists
a convex kite central configuration with our prescribed ordering.

Proof outline (modeled after Xia’s proof in the general case):
1 Since C′ is compact and U is continuous on its interior, a minimum

must exist, although it could be located on the boundary.
2 On the boundary c = 0, we have r24 = 0 and consequently

U →∞, so the minimum is not on this boundary.
3 Pick a point on the boundary a = 0 (bodies 2, 1, and 4 are

collinear). The directional derivative of U in the direction of the
vector u = v1/m1 − v2/(1−m3) is negative. Since the vector u
points into C′, there cannot be a minimum at this point. A similar
argument works for any point on the boundary b = 0.
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Uniqueness of Convex Kite C.C.’s

Goal: Show that any convex critical point is a nondegenerate local
minimum of U restricted to C′.

Let L = U + λI. Kite central configurations are critical points of L
satisfying I = 1.

The Hessian at a critical point z = (a,b, c) is the symmetric matrix
D2L(z) = D2U(z) + λD2I(z). We must show that the quadratic form

qz(v) = vT D2L(z)v , v ∈ Tz(C′)

is strictly positive for all vectors in Tz(C′).

This is equivalent to showing the matrix

P =

[
vT

1 D2L(z)v1 vT
1 D2L(z)v2

vT
2 D2L(z)v1 vT

2 D2L(z)v2

]
is positive definite (two positive eigenvalues), where v1 and v2 are the
basis vectors for Tz(C′).
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Uniqueness of Convex Kite C.C.’s (cont.)

Let

P =

[
vT

1 D2L(z)v1 vT
1 D2L(z)v2

vT
2 D2L(z)v1 vT

2 D2L(z)v2

]
=

[
α γ
γ β

]
We want to show α+ β > 0 and αβ − γ2 > 0.

α = 2mm1c2[4m2(λ− r−3
12 ) + 2mm3(λ− r−3

13 ) + 6mm3r−3
13

+ 3r−5
12 (2ma−m1(a− x))2 + 3m1(a− x)2(m3r−5

23 + 8mr−5
24 )]

β = 2mm3c2[4m2(λ− r−3
23 ) + 2mm1(λ− r−3

13 ) + 6mm1r−3
13

+ 3r−5
23 (2mb −m3(b + x))2 + 3m3(b + x)2(m1r−5

12 + 8mr−5
24 )]

γ = 2mm1m3c2[2m(λ+ 2r−3
13 )− 3(a− x)r−5

23 (2mb −m3(b + x))

− 3(b + x)r−5
12 (2ma−m1(a− x)) + 24m(a− x)(b + x)r−5

24 )]
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Simplifying Tricks

1 Use the first two c.c. equations and M = 1 to eliminate the
masses:

m1 = m ·
2b(r−3

23 − λ)
(a + b)(λ− r−3

13 )
, m3 = m ·

2a(r−3
12 − λ)

(a + b)(λ− r−3
13 )

2 Use the Dziobek equation to eliminate/estimate λ:

(r−3
12 − λ)(r

−3
23 − λ) = (λ− r−3

13 )(λ− r−3
24 )

3 Scale the three position variables by a factor of 1/c, so that the
new “c” becomes c = 1. This does not alter the signs of the
eigenvalues. By symmetry, we can assume that a ≥ b and
r13, r24 > r12 ≥ r23.

4 The quantity ab appears in several terms of the trace and
determinant. If ab < 0, then P is less likely to be positive definite,
i.e., a concave kite c.c. is less likely to be a local min.
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Figure: Region of the ab-plane satisfying r13, r24 > r12 ≥ r23. Any point outside
this region corresponds to a c.c. with a negative mass or r23 < r12.

Roberts (Holy Cross) Kite Central Configurations HC Faculty Seminar 39 / 40



Remarks/Future Work:

1 Progress: Can show the trace of P is positive, but the determinant
is really complicated!

2 Uniqueness: The Euler characteristic of C′ is 1 (it is
homeomorphic to a portion of a solid ellipse). From Morse Theory
we have

χ(C′) = 1 =
2∑

i=0

(−1)ini ,

where i is the Morse index and ni is the number of critical points of
index i . If all c.p.’s are local mins (i = 0), there can be only one.

3 Linear Stability: What region(s) in the ab-plane correspond to
stable kites? Do they possess a dominant mass (conjecture of
Moeckel’s)?

4 Thank you for your attention!
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