## **Population Growth**

What is the significance of the proportionality constant k? In the context of population growth, where P(t) is the size of a population at time t, we can write

$$\frac{dP}{dt} = kP$$
 or  $\frac{1}{P}\frac{dP}{dt} = k$ 

The quantity

$$\frac{1}{P} \frac{dP}{dt}$$

is the growth rate divided by the population size; it is called the **relative growth rate**.

**Example** Use the fact that the world population was 2560 million in 1950 and 3040 million in 1960 to model the population of the world in the second half of the 20th century. (Assume that the growth rate is proportional to the population size.) What is the relative growth rate? Use the model to estimate the world population in 1993 and to predict the population in the year 2020.

## **Radioactive Decay**

Radioactive substances decay by spontaneously emitting radiation. If m(t) is the mass remaining from an initial mass  $m_0$  of the substance after time t, then the relative decay rate

$$-\frac{1}{m}\frac{dm}{dt}$$

has been found experimentally to be constant. (Since dm/dt is negative, the relative decay rate is positive.) It follows that

$$\frac{dm}{dt} = km$$

where k is a negative constant. In other words, radioactive substances decay at a rate proportional to the remaining mass. This means that the mass decays exponentially:

$$m(t) = m_0 e^{kt}$$
, where  $k < 0$ 

The above equation can also be written as

$$m(t) = m_0 e^{-kt}$$
, where  $k > 0$ 

Physicists express the rate of decay in terms of half-life, the time required for half of any given quantity to decay.

**Example** The half-life of radium-226 is 1590 years.

- (a) A sample of radium-226 has a mass of 100 mg. Find a formula for the mass of the sample that remains after t years.
- (b) Find the mass after 1000 years correct to the nearest milligram.
- (c) When will the mass be reduced to 30 mg?

## Newton's Law of Cooling

Newton's Law of Cooling states that the rate of cooling of an object is proportional to the temperature difference between the object and its surroundings, provided that this difference is not too large. (This law also applies to warming.) If we let T(t) be the temperature of the object at time t and  $T_s$  be the temperature of the surroundings, then we can formulate Newton's Law of Cooling as a differential equation:

$$\frac{dT}{dt} = k(T - T_s)$$

where k is a constant. This equation is not quite the same as the differential equation we have seen in class, so we make the change of variable  $y(t) = T(t) - T_s$ . Because  $T_s$  is constant, we have y'(t) = T'(t) and so the equation becomes

$$\frac{dy}{dt} = ky$$

We can then use the equation  $y(t) = y(0)e^{kt}$  to find an expression for y, from which we can find T.

**Example** A bottle of soda pop at room temperature  $(72^{\circ}F)$  is placed in a refrigerator where the temperature is 44°F. After half an hour the soda pop has cooled to 61°F.

(a) What is the temperature of the soda pop after another half hour?

(b) How long does it take for the soda pop to cool to  $50^{\circ}$ F?

## **Continuously Compounded Interest**

**Example** If \$1000 is invested at 6% interest, compounded annually, then after 1 year the investment is worth 1000(1.06) = 1060, after 2 years it's worth 1000(1.06) = 1123.60, and after t years it's worth  $1000(1.06)^t$ .

In general, if an amount  $A_0$  is invested at an interest rate r (r = 0.06 in this example), then after t years it's worth  $A_0(1+r)^t$ . Usually, however, interest is compounded more frequently, say, n times a year. Then in each compounding period the interest rate is r/n and there are nt compounding periods in t years, so the value of the investment is

$$A_0 \left(1 + \frac{r}{n}\right)^n$$