Please do not write in the boxes immediately below.

| problem | 1 | 2 | 3 | 4 | 5 | 6 | 7 | total |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| points |  |  |  |  |  |  |  |  |

MATH 361 Spring 2024 Exam 3
April 25, 2024

Your name

The exam has 7 different printed sides of exam problems and 1 side workspace.
Duration of the Midterm Exam is 90 minutes. There are 7 problems. The first problem is mandatory, and it is worth 10 points. Each of the Problems 2-7 is worth 8 points. From Problems 2-7, only 5 problems will be graded. If you solve all Problems 2-7, you must cross out the problem in the box above that must not be graded. If you solve all Problems 2-7 and do not cross out a problem, only the first five problems from 2-7 will be graded. Show all your work for full credit. Books, notes etc. are prohibited. Calculators, cellphones, earphones, AirPods and cheat sheets are NOT permitted.

1. (a) Define the following:
(i) Open set.
(ii) Limit point of a set $A$.
(b) Identify all the limit points of the set $A=(1,3)$.
(c) Provide a sequence contained in the set that converges to each limit point in part (b) where each $a_{n}$ is not equal to the limit point.
(d) Decide whether the following set is open, closed, or neither. If the set is not open, find a point in the set for which there is no $\epsilon$-neighborhood contained in the set. If the set is not closed, find a limit point that is not contained in the set.

$$
\{1+1 / 2+1 / 3+\cdots+1 / n: n \in \mathbb{N}\}
$$

2. (a) State the Cauchy Condensation Test.
(b) Prove that a $p$-series $\sum_{k=1}^{\infty} \frac{1}{k^{p}}$ converges if and only if $p>1$.
(c) Determine whether the series $\sum_{k=2}^{\infty} \frac{1}{k(\ln k)^{2}}$ converges or diverges.
3. (a) State the Direct Comparison Test.
(b) Give a proof for the Direct Comparison Test using the Monotone Convergence Theorem.
(c) Determine whether the series $\sum_{n=1}^{\infty} \frac{2 n^{2}+n+1}{n^{4}+n+1}$ is convergent or divergent.
4. (a) Define the absolute convergence of a series $\sum_{k=1}^{\infty} a_{k}$.
(b) Prove the following: If a series converges absolutely, then it converges. Mention any result used.
(c) Define the conditional convergence of a series $\sum_{k=1}^{\infty} a_{k}$.
(d) Give an example of a series that converges conditionally.
(e) Give an example of a series that is neither absolutely convergent nor conditionally convergent.
5. Find the exact value of the sum of each series.
(a) $\sum_{k=1}^{\infty} \frac{5^{2 k}}{100^{k-1}}$
(b) $\sum_{k=1}^{\infty} a_{k}$, where $a_{1}+a_{2}+\cdots+a_{n}=\frac{3 n+1}{2 n+5}$ for all $n$.
6. Determine whether the following series converges or diverges.
(a) $\sum_{k=1}^{\infty} \frac{(k!)^{3}}{(3 k)!}$
(b) $\sum_{k=0}^{\infty}(\arctan k)^{k}$
(c) $\sum_{k=2}^{\infty} \frac{\cos k \pi}{(\ln k)^{2}}$
7. (a) Complete the following definition. $\lim _{x \rightarrow c} f(x)=L$ if for every $\epsilon>0$,
(b) Use the definition to prove $\lim _{x \rightarrow 3} x^{2}+4 x=21$.

WORKSHEET

