Please do not write in the boxes immediately below.

problem	1	2	3	4	5	6	total
points							

MATH 361 Spring 2024 Exam 1 February 20, 2024

Your name___

The exam has 7 different printed sides of exam problems and 1 side workspace.

Duration of the Midterm Exam is 90 minutes. There are 6 problems, worth 10 points each. From Problems 1 – 6, only 5 problems will be graded. If you solve all Problems 1 - 6, you must cross out the problem in the box above that must not be graded. If you solve all Problems 1 - 6 and do not cross out a problem, only the first five problems will be graded. Show all your work for full credit. Books, notes etc. are prohibited. Calculators, cellphones, earphones, AirPods and cheat sheets are NOT permitted.

- 1. Let $a, b, c, d \in \mathbb{R}$. Prove the following.
 - (a) If a > 0, then $a^{-1} > 0$.

(b) If b and d are nonzero, then $\frac{a}{b} + \frac{c}{d} = \frac{a \cdot d + c \cdot b}{b \cdot d}$.

(c)
$$|a^{-1}| = |a|^{-1}$$

(d)
$$\left|\frac{a}{b}\right| = \frac{|a|}{|b|}$$
 if $b \neq 0$

2. Let $x_1 = 16$ and $x_{n+1} = 4\sqrt{x_n} - 3$ for all $n \ge 1$. Use induction to prove that $x_n > 9$ for all $n \in \mathbb{N}$.

- 3. Let A be a nonempty subset of \mathbb{R} and suppose $\beta = \sup(A)$ exists. Decide whether each statement is true or false. You do not need to prove any of your assertions.
 - (a) If $x \in A$, then $x \leq \beta$
 - (b) If $x \notin A$, then $x > \beta$
 - (c) If $x < \beta$, then x is an element of A
 - (d) If $x < \beta$, then there exists some $a \in A$ such that a > x
 - (e) If $x < \beta$, then x is a lower bound of A
 - (f) If $x > \beta$, then $x \notin A$
 - (g) If $x > \beta$, then x is an upper bound of A
 - (h) If $\beta \in A$, then $\beta = \max(A)$

4. (a) Complete the following definition. A number β is the **least upper bound** of a set A, and we write $\beta = \sup(A)$, if

(b) State the Archimedean Property.

(c) Let $A = \{5 - \frac{6}{n} | n \in \mathbb{N}\}$. Find $\sup(A)$. Prove your assertion.

- 5. Let $S = \{x \in \mathbb{R} \mid x > 0 \text{ and } x^2 + x < 7\}.$
 - (a) State the Completeness Axiom.

(b) Prove that $\beta = \sup(A)$ exists.

(c) Prove that if $x \in S$, then there exists $n \in \mathbb{N}$ such that $x + \frac{1}{n} \in S$.

(d) Prove $\beta \notin S$.

- 6. (a) Complete the following definition. Two sets A and B have the same **cardinality** and we write $A \sim B$ if
 - (b) Define a **countable** set.
 - (c) Let $S = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}.$
 - (i) Prove that $S \sim \mathbb{Q} \times \mathbb{Q}$.

(ii) Is S countable or uncountable? Explain.

WORKSHEET