1. Find the limit.
(a) $\lim _{x \rightarrow 0} \frac{\cos x-1}{\sin x}$
(c) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\sin 7 x \cos 4 x}$
(b) $\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x^{2}-x}$
(d) $\lim _{x \rightarrow 0} \frac{\sin 4 x}{\tan 5 x}$
2. Evaluate the following limit, if it exists. If it does not exist, indicate if it is ∞ or $-\infty$
(a) $\lim _{x \rightarrow \pi^{-}} x \cot x$
(c) $\lim _{x \rightarrow 2^{+}} \frac{x^{2}-2 x}{x^{2}-4 x+4}$
(b) $\lim _{x \rightarrow 5^{-}} \frac{e^{x}}{(x-5)^{3}}$
(d) $\lim _{x \rightarrow 3}\lfloor x\rfloor$, where $\lfloor\cdot\rfloor$ denotes the floor function.
3. Let

$$
f(x)= \begin{cases}1 & \text { if } x \leq 1 \\ 2-x^{2} & \text { if } 1<x<2 \\ x-3 & \text { if } x \geq 2\end{cases}
$$

(a) Evaluate the following
(i) $\lim _{x \rightarrow 1} f(x)$
(ii) $\lim _{x \rightarrow 2} f(x)$
(b) Determine where f is continuous expressing your answer in interval notation.
4. (a) Show that

$$
f(x)= \begin{cases}x^{2} \sin ^{2}\left(\frac{\pi}{x}\right) & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

is continuous at $x=0$
(b) For what value of a is the function continuous on $(-\infty, \infty)$?

$$
f(x)= \begin{cases}a x^{2}+3 x & \text { if } x<2 \\ x^{3}-a x & \text { if } x \geq 2\end{cases}
$$

5. Determine all values of the constants A and B so that the following function is continuos for all values of x.

$$
f(x)= \begin{cases}A x-B & \text { if } x \leq-1 \\ 2 x^{2}+2 A x+B & \text { if }-1<x \leq 1 \\ 4 & \text { if } x>1\end{cases}
$$

6. (a) Consider the function $f(x)=x+(x-2+|x-2|)^{2}$. Find the limit

$$
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}
$$

if it exists.
(b) Find $\lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\sqrt{1-x}}{x}$, if it exists.
7. Find the vertical asymptotes of $f(x)=\frac{2 x+1}{x^{2}-2 x-8}$.
8. Is the following statement true? If it is false, give a counterexample by drawing a graph.

If $f(x)$ is continuous and has a root in $[a, b]$, then $f(a)$ and $f(b)$ have opposite signs.
9. Assume that $f(t)$ is continuous on $[1,5]$ and that $f(1)=20, f(5)=100$. Determine whether each of the following statements is always true, never true, or sometimes true.
(a) $f(c)=3$ has a solution with $c \in[1,5]$.
(b) $f(c)=75$ has a solution with $c \in[1,5]$.
(c) $f(c)=50$ has no solution with $c \in[1,5]$.
(d) $f(c)=30$ has exactly one solution with $c \in[1,5]$.
10. Use the IVT to show that $f(x)=x^{3}+x$ takes on the value 9 for some x in $[1,2]$.
11. Show that $\cos x=x$ has a solution in the interval $[0,1]$. Hint: Show that $f(x)=x-\cos x$ has a zero in $[0,1]$.
12. Use the IVT to find an interval of length $\frac{1}{2}$ containing a root of $f(x)=x^{3}+2 x+1$.
13. Prove using the IVT.
(i) $\sqrt{c}+\sqrt{c+2}=3$ has a solution.
(ii) $2^{x}=b x$ has a solution if $b>2$.
(iii) $2^{x}+3^{x}=4^{x}$ has a solution.
(iv) $\tan x=x$ has infinitely many solutions.
14. Find an interval of length $\frac{1}{4}$ in [1, 2] containing a root of the equation $x^{7}+3 x-10=0$.

