1. For the function g whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{t \rightarrow 0^{-}} g(t)$
(d) $\lim _{t \rightarrow 2^{-}} g(t)$
(g) $g(2)$
(b) $\lim _{t \rightarrow 0^{+}} g(t)$
(e) $\lim _{t \rightarrow 2^{+}} g(t)$
(h) $\lim _{t \rightarrow 4} g(t)$
(c) $\lim _{t \rightarrow 0} g(t)$
(f) $\lim _{t \rightarrow 2} g(t)$

2. For the function A whose graph is shown, state the following.
(a) $\lim _{x \rightarrow-3} A(x)$
(c) $\lim _{x \rightarrow 2^{+}} A(x)$
(b) $\lim _{x \rightarrow 2^{-}} A(x)$
(d) $\lim _{x \rightarrow-1} A(x)$
(e) The equations of the vertical asymptotes

3. For the function h whose graph is given, state the value of each quantity, if it exists. If it does not exist, explain why.
(a) $\lim _{x \rightarrow-3^{-}} h(x)$
(e) $\lim _{x \rightarrow 0^{-}} h(x)$
(i) $\lim _{x \rightarrow 2} h(x)$
(b) $\lim _{x \rightarrow-3^{+}} h(x)$
(f) $\lim _{x \rightarrow 0^{+}} h(x)$
(j) $h(2)$
(c) $\lim _{x \rightarrow-3} h(x)$
(g) $\lim _{x \rightarrow 0} h(x)$
(k) $\lim _{x \rightarrow 5^{+}} h(x)$
(d) $h(-3)$
(h) $h(0)$
(l) $\lim _{x \rightarrow 5^{-}} h(x)$

4. Let

$$
f(x)= \begin{cases}1+x & \text { if } x<-1 \\ x^{2} & \text { if }-1 \leq x \leq 1 \\ 2-x & \text { if } x \geq 1\end{cases}
$$

Sketch the graph of the function and use it to determine the limits $\lim _{x \rightarrow-1} f(x)$ and $\lim _{x \rightarrow 1} f(x)$ if they exist. If they do not, explain why.
5. Let

$$
f(x)= \begin{cases}1+\sin x & \text { if } x<0 \\ \cos x & \text { if } 0 \leq x \leq \pi \\ \sin x & \text { if } x>\pi\end{cases}
$$

Compute the limits $\lim _{x \rightarrow 0} f(x)$ and $\lim _{x \rightarrow \pi} f(x)$ if they exist. If they do not, explain why.
6. Sketch the graph of an example of a function f that satisfies all of the given conditions.

$$
\begin{gathered}
\lim _{x \rightarrow 0} f(x)=1, \lim _{x \rightarrow 3^{-}} f(x)=-2, \lim _{x \rightarrow 3^{+}} f(x)=2, \\
f(0)=-1, \quad f(3)=1
\end{gathered}
$$

7. Determine the infinite limit.
(a) $\lim _{x \rightarrow 5^{+}} \frac{x+1}{x-5}$
(e) $\lim _{x \rightarrow 3^{+}} \ln \left(x^{2}-9\right)$
(b) $\lim _{x \rightarrow 5^{-}} \frac{x+1}{x-5}$
(f) $\lim _{x \rightarrow 0^{+}} \ln (\sin x)$
(c) $\lim _{x \rightarrow 1} \frac{2-x}{(x-1)^{2}}$
(d) $\lim _{x \rightarrow 3^{-}} \frac{\sqrt{x}}{(x-3)^{5}}$
(g) $\lim _{x \rightarrow \pi^{-}} \cot x$
(h) $\lim _{x \rightarrow 2^{-}} \frac{x^{2}-2 x}{x^{2}-4 x+4}$
