Calculus 1 with Fundamentals

- 1. For the following exercises, sketch the graph of the exponential function. Determine the domain, range, and horizontal asymptote.
 - (i) $f(x) = e^x + 2$ (ii) $f(x) = 1 - 2^{-x}$ (iii) $f(x) = 5^{x+1} + 2$ (iv) $f(x) = e^{-x} - 1$

Definition A function f is called a **one-to-one function** if it never takes on the same value twice; that is,

 $f(x_1) \neq f(x_2)$ whenever $x_1 \neq x_2$

Horizontal Line Test A function is one-to-one if and only if no horizontal line intersects its graph more than once.

- 2. Is the function $f(x) = x^3$ one-to-one?
- 3. A function is given by a graph. Determine whether it is one-to-one.

- 4. Let $0 \le \theta < \pi/2$. Find $\sin 2\theta$ and $\cos 2\theta$ if $\tan \theta = \sqrt{2}$.
- 5. Find $\cos \theta$ if $\cot \theta = \frac{4}{3}$ and $\sin \theta < 0$.
- 6. Simplify the expression.

$$\frac{1 + \tan^2 \alpha}{1 + \cot^2 \alpha}$$

7. Verify that the following equation is an identity.

$$\sin^2\beta + \tan^2\beta + \cos^2\beta = \sec^2\beta$$

8. Solve the trigonometric equation on the interval $0 \le \theta < 2\pi$.

$$1 + \cos \theta = \frac{1}{2}$$