1. For the following exercises, sketch the graph of the exponential function. Determine the domain, range, and horizontal asymptote.
(i) $f(x)=e^{x}+2$
(ii) $f(x)=1-2^{-x}$
(iii) $f(x)=5^{x+1}+2$
(iv) $f(x)=e^{-x}-1$

Definition A function f is called a one-to-one function if it never takes on the same value twice; that is,

$$
f\left(x_{1}\right) \neq f\left(x_{2}\right) \quad \text { whenever } x_{1} \neq x_{2}
$$

Horizontal Line Test A function is one-to-one if and only if no horizontal line intersects its graph more than once.
2. Is the function $f(x)=x^{3}$ one-to-one?
3. A function is given by a graph. Determine whether it is one-to-one.

4. Let $0 \leq \theta<\pi / 2$. Find $\sin 2 \theta$ and $\cos 2 \theta$ if $\tan \theta=\sqrt{2}$.
5. Find $\cos \theta$ if $\cot \theta=\frac{4}{3}$ and $\sin \theta<0$.
6. Simplify the expression.

$$
\frac{1+\tan ^{2} \alpha}{1+\cot ^{2} \alpha}
$$

7. Verify that the following equation is an identity.

$$
\sin ^{2} \beta+\tan ^{2} \beta+\cos ^{2} \beta=\sec ^{2} \beta
$$

8. Solve the trigonometric equation on the interval $0 \leq \theta<2 \pi$.

$$
1+\cos \theta=\frac{1}{2}
$$

