1. Find a formula for the described function and state its domain.
(i) A rectangle has perimeter 20 m . Express the area of the rectangle as a function of the length of one of its sides.
(ii) A rectangle has area $16 \mathrm{~m}^{2}$. Express the perimeter of the rectangle as a function of the length of one of its sides.
(iii) Express the area of an equilateral triangle as a function of the length of a side.
(iv) A closed rectangular box with volume $8 \mathrm{ft}^{3}$ has length twice the width. Express the height of the box as a function of the width.
(v) An open rectangular box with volume $2 \mathrm{~m}^{3}$ has a square base. Express the surface area of the box as a function of the length of a side of the base.

Piecewise Defined Functions

2. Let

$$
f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 0 \\ x-1 & \text { if } 1 \leq x \leq 4 \\ 5 & \text { if } x>4\end{cases}
$$

(a) Compute $f(0), f(2), f(5)$ and $f(-1)$.
(b) Graph the function.
3. Let

$$
f(x)= \begin{cases}(x-3)^{2}+2 & \text { if } x \neq 3 \\ 4 & \text { if } x=3\end{cases}
$$

(a) Compute $f(-1), f(3)$ and $f(5)$.
(b) Graph the function.
4. Let

$$
f(x)= \begin{cases}2^{x} & \text { if } x \leq 1 \\ 3-x & \text { if } 1<x \leq 4 \\ \sqrt{x} & \text { if } x>4\end{cases}
$$

(a) Compute $f(0), f(2), f(5)$ and $f(-1)$.
(b) Graph the function.
5. A cell phone plan has a basic charge of $\$ 35$ a month. The plan includes 400 free minutes and charges 10 cents for each additional minute of usage. Write the monthly cost C as a function of the number x of minutes used and graph C as a function of x for $0<x<600$.
6. An electricity company charges its customers a base rate of $\$ 10$ a month, plus 6 cents per kilowatt-hour (kWh) for the first 1200 kWh and 7 cents per kWh for all usage over 1200 kWh . Express the monthly cost E as a function of the amount x of electricity used. Then graph the function E for $0<x<2000$.

Absolute Value Functions

7. Sketch the graph of the following functions.
(a) $f(x)=|x-3|$
(b) $g(x)=|2 x+1|$
(c) $f(x)=x+|x|$

Transformations of Functions

Vertical and Horizontal Shifts Suppose $c>0$. To obtain the graph of

- $y=f(x)+c$, shift the graph of $y=f(x)$ a distance c units upward.
- $y=f(x)-c$, shift the graph of $y=f(x)$ a distance c units downward.
- $y=f(x-c)$, shift the graph of $y=f(x)$ a distance c units to the right.
- $y=f(x+c)$, shift the graph of $y=f(x)$ a distance c units to the left.

Vertical and Horizontal Stretching and Reflecting Suppose $c>1$. To obtain the graph of

- $y=c f(x)$, stretch the graph of $y=f(x)$ vertically by a factor of c.
- $y=(1 / c) f(x)$, shrink the graph of $y=f(x)$ vertically by a factor of c.
- $y=f(c x)$, shrink the graph of $y=f(x)$ horizontally by a factor of c.
- $y=f(x / c)$, stretch the graph of $y=f(x)$ horizontally by a factor of c.
- $y=-f(x)$, reflect the graph of $y=f(x)$ about the x-axis.
- $y=f(-x)$, reflect the graph of $y=f(x)$ about the y-axis.

1. Given the graph of $y=\sqrt{x}$, use transformations to graph
(i) $y=\sqrt{x}-2$,
(iI) $y=\sqrt{x-2}$,
(iII) $y=-\sqrt{x}$,
(iv) $y=2 \sqrt{x}$, and
(v) $y=\sqrt{-x}$.
2. Sketch the graph of the function $f(x)=x^{2}+6 x+10$.
