1. Evaluate the difference quotient for the given function. Simplify your answer.

$$
f(x)=x^{3}, \quad \frac{f(a+h)-f(a)}{h}
$$

2. Evaluate the difference quotient for the given function. Simplify your answer.

$$
f(x)=\frac{x+3}{x+1}, \quad \frac{f(x)-f(1)}{x-1}
$$

3. Find the domain of the function.
(i) $\frac{x+4}{x^{2}-9}$
(ii) $\sqrt[3]{2 t-1}$
(iii) $\frac{1}{\sqrt[4]{x^{2}-5 x}}$
(iv) $F(p)=\sqrt{2-\sqrt{p}}$
(v) $\sqrt{3-t}-\sqrt{2+t}$
(iii) $\frac{2 x^{3}-5}{x^{2}+x-6}$
4. Find the functions $f \circ g, g \circ f, f \circ f$, and $g \circ g$ and their domains.
(a) $f(x)=x^{2}-1, g(x)=2 x+1$
(c) $f(x)=\sqrt{x}, g(x)=\sqrt[3]{1-x}$
(b) $f(x)=1-3 x, g(x)=\cos x$
(d) $f(x)=x+\frac{1}{x}, g(x)=\frac{x+1}{x+2}$
5. Let

$$
f(x)= \begin{cases}x^{2}-1 & \text { if } x \leq 0 \\ x-1 & \text { if } 1 \leq x \leq 4 \\ 5 & \text { if } x>4\end{cases}
$$

(a) Compute $f(0), f(2), f(5)$ and $f(-1)$.
(b) Graph the function.
6. In a certain state, the maximum speed permitted on freeways is $65 \mathrm{mi} / \mathrm{h}$ and the minimum speed is $40 \mathrm{mi} / \mathrm{h}$. The fine for violating these limits is $\$ 15$ for every mile per hour above the maximum speed or below the minimum speed. Express the amount of the fine F as a function of the driving speed x and graph $F(x)$ for $0 \leq x \leq 100$.

