MATH 133 - 01

1. Evaluate the difference quotient for the given function. Simplify your answer.

$$f(x) = x^3, \quad \frac{f(a+h) - f(a)}{h}$$

2. Evaluate the difference quotient for the given function. Simplify your answer.

$$f(x) = \frac{x+3}{x+1}, \quad \frac{f(x) - f(1)}{x-1}$$

3. Find the domain of the function.

(i)
$$\frac{x+4}{x^2-9}$$

(ii) $\sqrt[3]{2t-1}$
(iii) $\frac{1}{\sqrt[4]{x^2-5x}}$
(iv) $F(p) = \sqrt{2-\sqrt{p}}$
(v) $\sqrt{3-t} - \sqrt{2+t}$
(iii) $\frac{2x^3-5}{x^2+x-6}$

4. Find the functions $f \circ g$, $g \circ f$, $f \circ f$, and $g \circ g$ and their domains.

(a)
$$f(x) = x^2 - 1$$
, $g(x) = 2x + 1$ (c) $f(x) = \sqrt{x}$, $g(x) = \sqrt[3]{1 - x}$

(b)
$$f(x) = 1 - 3x$$
, $g(x) = \cos x$ (d) $f(x) = x + \frac{1}{x}$, $g(x) = \frac{x+1}{x+2}$

5. Let

$$f(x) = \begin{cases} x^2 - 1 & \text{if } x \le 0\\ x - 1 & \text{if } 1 \le x \le 4\\ 5 & \text{if } x > 4 \end{cases}$$

(a) Compute f(0), f(2), f(5) and f(-1).

(b) Graph the function.

6. In a certain state, the maximum speed permitted on freeways is 65 mi/h and the minimum speed is 40 mi/h. The fine for violating these limits is \$15 for every mile per hour above the maximum speed or below the minimum speed. Express the amount of the fine F as a function of the driving speed x and graph F(x) for $0 \le x \le 100$.