How to determine whether a function is increasing/decreasing on an interval?

- (a) If f'(x) > 0 for $x \in (a, b)$, then f is increasing on (a, b).
- (b) If f'(x) < 0 for $x \in (a, b)$, then f is decreasing on (a, b).
- (1) Find where the function $f(x) = 3x^4 4x^3 12x^2 + 5$ is increasing and where it is decreasing.

First Derivative Test Assume that f(x) is differentiable and c is a critical point of f(x). Then we have the following.

- (a) If f' changes from + to at c, then f has a local maximum at c, and f(c) is a local maximum value of f.
- (b) If f' changes from to + at c, then f has a local minimum at c, and f(c) is a local minimum value of f.
- (c) If f' is + to the left and right of c, or to the left and right of c, then f has no local maximum or minimum at c.

Example Find the local maximum and minimum values of the function

$$g(x) = x + 2\sin x, \ 0 \le x \le 2\pi$$

Definition If the graph of f lies above all of its tangents on an interval I, then it is called concave upward on I. If the graph of f lies below all of its tangents on I, it is called concave downward on I.

Test for Concavity Assume that f''(x) exists for all $x \in (a, b)$.

- (a) If f''(x) > 0 for all $x \in (a, b)$, then f is concave up on (a, b).
- (b) If f''(x) < 0 for all $x \in (a, b)$, then f is concave down on (a, b).

Definition A point P on a curve y = f(x) is called an **inflection point** if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

Test for Inflection Points Assume that f''(x) exists. If f''(c) = 0 and f''(x) changes sign at x = c, then f(x) has a point of inflection at x = c

Example Find the points of inflection and intervals of concavity of $f(x) = 3x^5 - 5x^4 + 1$.

Second Derivative Test Let c be a critical point of f(x). If f''(c) exists, then

- $f''(c) > 0 \implies f(c)$ is a local minimum.
- $f''(c) < 0 \implies f(c)$ is a local maximum.
- $f''(c) = 0 \implies$ inconclusive: f(c) may be a local min, a local max, or neither.

Example Analyze the critical points of

$$f(x) = 2x^3 + 3x^2 - 12x$$

Example Analyze the critical points of

$$f(x) = x^5 - 5x^4$$

Problem Sheet 6

- 1. Consider the function $f(x) = x^4 2x^2 + 3$
 - (i) find the intervals on which f is increasing or decreasing.
 - (ii) find the local maximum and minimum values of f.
 - (iii) find the intervals of concavity and the inflection points.
- 2. Consider the function $f(x) = x^2 x \ln x$
 - (i) find the intervals on which f is increasing or decreasing.
 - (ii) find the local maximum and minimum values of f.
 - (iii) find the intervals of concavity and the inflection points.
- 3. Consider the function $y = \frac{x^2+1}{(x+3)^2}$
 - (i) find all intervals of increase/decrease.
 - (ii) find all local extrema.
 - (iii) find all intervals of concave up/down.
 - (iv) find all points of inflection.
 - (v) sketch the graph of the function.
- 4. Find the local maximum and minimum values of f using both the First and Second Derivative Tests.

(a)
$$f(x) = 1 + 3x^2 - 2x^3$$

(b)
$$f(x) = \frac{x^2}{x-1}$$