Definition Let Y_1, Y_2, \ldots, Y_n be a random sample with likelihood function $L(y_1, y_2, \ldots, y_n | \theta)$, and let θ have prior density $g(\theta)$. The posterior Bayes estimator for $t(\theta)$ is given by

$$\widehat{t(\theta)}_B = E(t(\theta)|Y_1, Y_2, \dots, Y_n).$$

Example 1 Let Y_1, Y_2, \ldots, Y_n denote a random sample from a Bernoulli distribution where $P(Y_i = 1) = p$ and $P(Y_i = 0) = 1 - p$ and assume that the prior distribution for p is $Beta(\alpha, \beta)$. Find the posterior distribution for p.

Example 2 We found the posterior distribution of the Bernoulli parameter p based on a beta prior with parameters (α, β) . Find the Bayes estimators for p and p(1-p). [Recall that p(1-p) is the variance of a Bernoulli random variable with parameter p].

Example 3 Suppose that Y is a binomial random variable based on n trials and success probability p. Use the conjugate beta prior with parameters α and β to derive the posterior distribution of p|y. Compare this posterior with that found in Example 1.

Example 4 Refer to Example 3.

- (1) Suppose that our prior distribution is Beta(5,6), and we observe 10 heads among 30 coin flips. What is our posterior distribution?
- (2) Suppose that our prior distribution is Beta(4,16), and we observe 3 heads among 10 coin flips. What is our posterior distribution?
- (3) And what if we observe heads on the next coin flip? What does our new posterior look like?

Note: The process could continue for any amount of data! If the initial prior is a beta distribution, then the posterior is always a beta distribution!!

Example 5 In class, we considered an example where the number of responders to a treatment for a virulent disease in a sample of size n had a binomial distribution with parameter p and used a beta prior for p with parameters $\alpha = 1$ and $\beta = 3$.

- (1) Find the Bayes estimator for p = the proportion of those with the virulent disease who respond to the therapy.
- (2) Derive the mean and variance of the Bayes estimator found in part (a).

Example 6 Refer to Example 3. if Y is a binomial random variable based on n trials and success probability p and p has the conjugate beta prior with parameters $\alpha = 1$ and $\beta = 1$.

- (1) Determine the Bayes estimator for p, \hat{p}_B .
- (2) What is another name for the beta distribution with $\alpha = 1$ and $\beta = 1$?
- (3) Find the Mean Square Error (MSE) of the Bayes estimator found in part (a).
- (4) For what values of p is the MSE of the Bayes estimator smaller than that of the unbiased estimator $\hat{p} = Y/n$?

So how does this fit in with inference? In the Bayesian context, the parameter θ is a random variable with posterior density function $g^*(\theta)$. If we consider the interval (a, b), the posterior probability that the random variable θ is in this interval is

$$P^*(a \le \theta \le b) = \int_a^b g^*(\theta) \, d\theta$$

If the posterior probability $P^*(a \le \theta \le b) = .90$, we say that (a, b) is a 90% credible interval for θ .

Example 7 Let Y_1, Y_2, \ldots, Y_n denote a random sample from an exponentially distributed population with density $f(y|\theta) = \theta e^{-\theta y}, 0 < y$. The mean of this population is $\mu = \frac{1}{\theta}$. Use the conjugate gamme (α, β) prior for θ to do the following:

(i) Show that the joint density of $Y_1, Y_2, \ldots, Y_n, \theta$ is

$$f(y_1, y_2, \dots, y_n, \theta) = \frac{\theta^{n+\alpha-1}}{\Gamma(\alpha) \beta^{\alpha}} \exp\left[-\theta / \left(\frac{\beta}{\beta \sum y_i + 1}\right)\right].$$

(ii) Show that the marginal density of Y_1, Y_2, \ldots, Y_n is

$$m(y_1, y_2, \dots, y_n = \frac{\Gamma(n+\alpha)}{\Gamma(\alpha) \beta^{\alpha}} \Big(\frac{\beta}{\beta \sum y_i + 1}\Big)^{\alpha+n}.$$

- (iii) Show that the posterior density for $\theta|(y_1, y_2, \dots, y_n)$ is a gamma density with parameters $\alpha^* = n + \alpha$ and $\beta^* = \beta/(\beta \sum y_i + 1)$.
- (iv) Show that the Bayes estimator for $\mu = 1/\theta$ is

$$\hat{\mu}_b = \frac{\sum Y_i}{n+\alpha-1} + \frac{1}{\beta(n+\alpha-1)}.$$

- (v) Show that the Bayes estimator in part (d) can be written as a weighted average of \overline{Y} and the prior mean for $1/\theta$.
- (vi) Show that the Bayes estimator in part (d) is a biased but consistent estimator for $\mu = 1/\theta$.
- (vii) Assume that an analyst chose $\alpha = 3$ and $\beta = 5$ as appropriate parameter values for the prior and that a sample of size n = 10 yielded that $\sum y_i = 1.26$. Construct 90% credible intervals for θ and the mean of the population, $\mu = 1/\theta$.
- (viii) Using a conjugate gamma prior for θ with parameters $\alpha = 3$ and $\beta = 5$, we obtained that the posterior density for θ is a gamma density with parameters $\alpha^* = 13$ and $\beta^* = .685$. Conduct the Bayesian test for

 $H_0: \mu > .12$ versus $H_a: \mu \le .12$.