(1) UC Berkley and Gender Discrimination in College Admissions In 1973, the University of California-Berkeley was sued for sex discrimination. The numbers looked pretty incriminating: the graduate schools had just accepted 44% of male applicants but only 35% of female applicants. Let's check it out!

Data below are from the 6 largest departments on campus at the time.

Department	Gender	Accept	Reject	% Accept
A	Men	512	313	62
	Women	89	19	82
В	Men	353	207	63
	Women	17	8	68
C	Men	120	205	37
	Women	202	391	34
D	Men	138	279	33
	Women	131	244	35
E	Men	53	138	28
	Women	94	299	24
F	Men	22	351	6
	Women	24	317	7
Total	Men	1198	1493	41
	Women	557	1278	30

- (a) You are given the marginal table. The control variable is the "Department". What is the marginal OR of a woman being admitted to graduate school compared to a man being admitted to graduate school?
- (b) Interpret the meaning of your numerical answer to part (b).
- (c) Are admissions and gender marginally dependent? Use a χ^2 test with $\alpha = 0.05$.
- (d) Write down the partial tables for each department.
- (e) Compute the conditional ORs of a woman being admitted to graduate school compared to a man admitted to graduate school?
- (f) Are gender and admission status conditionally independent given department?
- (g) Compare the marginal OR and conditional ORs. Does the association appear to reverse direction?
- (2) Suppose that we have two drug treatments, A and B (variable X), and we define a response variable, Y, in terms of success and failure of the treatment. The treatments are taking place at two clinics which we'll label by Z = 1, 2.

Clinic (Z)	Treatment (X)	Success	Failure
1	А	18	12
	В	12	8
2	А	2	8
	В	8	32
Overall	А	20	20
	В	20	40

- (a) Calculate the conditional OR for treatment A compared to treatment B.
- (b) Are treatment and response independent for a given clinic?
- (c) Calculate marginal OR.
- (d) Are treatment and response marginally independent?
- (e) Compute $\hat{\theta}_{XZ(Y=S)}$ and $\hat{\theta}_{XZ(Y=F)}$.
- (f) Interpret the meaning of your answer to part (e).
- (g) Compute $\hat{\theta}_{YZ(X=A)}$ and $\hat{\theta}_{YZ(X=B)}$.
- (h) Interpret the meaning of your answer to part (g).