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The many lives of the twisted cubic

Abstract. We trace some of the history of the twisted cubic curves in three-dimensional affine
and projective spaces. These curves have reappeared many times in many different guises and
at different times they have served as primary objects of study, as motivating examples, and as
hidden underlying structures for objects considered in mathematics and its applications.

1. INTRODUCTION Because of its simple coordinate functions, the humble (affine)
twisted cubic curve in R3, given in the parametric form

Z(t) = (t,8%,1°) (1.1)

is staple of computational problems in many multivariable calculus courses. (See Fig-
ure 1.) We and our students compute its intersections with planes, find its tangent
vectors and lines, approximate the arclength of segments of the curve, derive its cur-
vature and torsion functions, and so forth. But in many calculus books, the curve is
not even identified by name and no indication of its protean nature and rich history is
given.

This essay is (semi-humorously) in part an attempt to remedy that situation, and
(more seriously) in part a meditation on the ways that the things mathematicians study
often seem to have existences of their own. Basic structures can reappear at many
times in many different contexts and under different names. According to the current
consensus view of mathematical historiography, historians of mathematics do well to
keep these different avatars of the underlying structure separate because it is almost
never correct to attribute our understanding of the sorts of connections we will be con-
sidering to the thinkers of the past. For mathematicians, however, it can be revelatory
to see the same conceptual building blocks in many different guises.

In this article we will present a number of occurrences of the basic structure of the
twisted cubic from a virtual cross-section of the subject of geometry, with a survey of
the different tools that have been applied to study geometry, and a discussion of some
important applications that lead back to this same geometry. We will start with a sort of
“pre-history” of our main character in one of the ancient Greek attempts to duplicate
the cube — to construct the edge of a cube with twice the volume of a given cube. Here
we will be applying our current understanding to what the Greeks did; we are defi-
nitely not saying that Greek mathematicians would have thought about what they did
in anything like the way we will describe it. We will then turn to the initial study of the
twisted cubic in 19th century differential and algebraic geometry. The twisted cubic
was much studied in the early 19th century as a first example of a nonplanar curve and
many of its interesting properties were obtained in that period. In the context of differ-
ential geometry we will see how the Frenet-Serret frames introduced by Jean Fréderic
Frenet and Joseph Alfred Serret in the 1850’s lead to the twisted cubic as a sort of
universal local model for the geometry of a space curve. We will then see how this
curve served as a key example and test case for the influential and far-reaching work
of David Hilbert on free resolutions of modules over polynomial rings. The particular
case of the twisted cubic gives an instance of the so-called Hilbert-Burch theorem, a
key result of modern commutative algebra. Finally we will see how several applica-
tions of mathematical ideas such as Bézier curves and binomial probability models
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Figure 1. The twisted cubic in R3, ¢ € [—2, 2]

lead back to the twisted cubic and/or its higher dimensional generalizations. Realizing
the connections here have led to some exciting contemporary applications of algebraic
geometry in geometric design and statistics.

2. THE “PREHISTORY” OF THE TWISTED CUBIC Three famous construc-
tion problems, the duplication of the cube, together with the problems of squaring
the circle and trisecting a general angle seem to have played a key role in fueling
the development of Greek geometry throughout the Classical and Hellenistic periods.
For a fascinating work of historical scholarship on this tradition, see [8]. A number of
(almost certainly fanciful) traditions deal with the genesis of the duplication problem.
For instance, one says that, seeking to halt a plague on their island, the people of De-
los consulted the oracle at Delphi for help. The priestess who conveyed the oracle’s
pronouncements replied that they must double the size of the god Apollo’s cubical al-
tar to propitiate him. Unable to find a solution, the Delians supposedly consulted the
geometers at Plato’s Academy in Athens for the required geometric construction. As a
result, the “Delian problem” is often used as a synonym for the duplication problem.

According to fragments of a history of pre-Euclidean mathematics by Eudemus of
Rhodes (ca. 370 — ca. 300 BCE) preserved in other sources, this problem was being
studied considerably before Plato’s time and an important piece of progress had been
made before or near the start of Plato’s lifetime (ca. 428 - ca. 348 BCE) by Hippocrates
of Chios (ca. 470—ca. 410 BCE). None of Hippocrates’ own writings have survived,
but he is recorded to have observed the following relationships.

Given two line segments AB and G H, following Hippocrates the Greeks said line
segments C'D and E'F' were two mean proportionals in continued proportion between
AB and G H if their lengths are proportional as follows:

AB:CD=CD: EF=FEF:GH. (2.1)
Hippocrates’ contribution was the realization that if we start with
GH =2AB,

then any construction of two mean proportionals as in (2.1) would solve the problem
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of the duplication of the cube. The idea is straightforward: If
AB:CD=CD : EF =FEF :2AB,

then some simple manipulation of proportions (we can do this easily with properties
of algebraic ratios) shows

CD? =2AB3.

In other words, if AB is the side of the original cube, then C'D is the side of the cube
with twice the volume.

With this observation, Hippocrates in effect only reduced one (difficult) problem to
another (difficult) problem. Finding a geometric construction of the two mean propor-
tionals in continued proportion was still an open question but this approach did provide
a definite way to attack the duplication of the cube and essentially all later work took
Hippocrates’ reduction as a starting point.

We have it from later sources such as the commentary on Book I of Euclid’s Ele-
ments by Proclus (412 - 485 CE) (see [10] for a modern translation) that Menaechmus
of Alopeconnesus (380-320 BCE) was one of the geometers at the Academy in Athens
in Plato’s circle. Another ancient source, a catalog of different methods for finding the
two mean proportionals in continued proportion in a commentary on Archimedes’ On
the Sphere and the Cylinder by Eutocius of Ascalon (ca. 480 — ca. 540 CE), includes a
purported description of Menaechmus’ solution, described (in possibly anachronistic
terms, using later terminology for conic sections usually attributed to Apollonius of
Perga (262-190 BCE)). See [11] for a modern translation of Archimedes’ work and
Eutocius’ commentary.

Given line segments of lengths a, z, finding the two mean proportionals in contin-
ued proportion means finding x, y to satisfy:

a:x=x:Y=19Y:=2. (2.2)

Hence, transforming these proportions by the operation we would call “cross-multiplying”
and interpreting the resulting equations via coordinate geometry, we see the solution
to the Delian problem will come from a simultaneous solution of the equations

ay = x°, TY = az, rz = y>. (2.3)

If, as we said above, z is a given length, then these equations describe two parabolas
and a hyperbola in the z,y plane and the solution comes from determining the point
of intersection of any pair of the curves. However, if we think of z as another variable,
the first equation describes a cylinder over a parabola, the middle one describes a
hyperbolic paraboloid and the final one is a quadric cone with vertex at the origin.

Setting aside the interesting (and still controversial) historical question of exactly
when the Greeks would have understood the connection between relations like those in
(2.3) (where they would have interpreted a, x, y, z as lengths and the products as areas)
and conics or surfaces in three-space, we can see the claimed connection between what
we have said so far and the twisted cubic. Think of setting a unit of distance by making
a = 1 and then parametrizing all instances of the problem in terms of the length x.
From (2.2) we see

January 2014] THE MANY LIVES OF THE TWISTED CUBIC 3



Mathematical Assoc. of America American Mathematical Monthly 121:1 February 10,2018 11:32a.m. TwistedMonthly.tex page 4

and hence the problem of finding the two mean proportionals is, essentially, the prob-
lem of finding a point of intersection of the twisted cubic from (1.1) and a given plane
z = c. With the understanding of the conditions for solvability by straightedge and
compass obtained via algebra in the 19th century, we can see that this problem, and
hence the duplication of the cube, is not solvable by those methods for a general c. In
addition we see the fact that the twisted cubic coincides with the intersection of the
three quadric surfaces. This way of determining implicit equations of the curve will
reappear in an important role later.

On the basis of this description of Menaechmus’ work from Eutocius’ commentary
and some other traditions preserved in other sources such as Proclus’ commentary on
Euclid, Menaechmus has often been credited with the invention of the theory of the
conic sections (at least in some form). If he did that, from our point of view here, it’s
somewhat ironic that he did that essentially by a method so closely tied to the twisted
cubic — a curve that is not even contained in a plane.

3. THE TWISTED CUBIC GETS A NAME AND MOVES TO PROJECTIVE
SPACE Apparently, Ferdinand August Mobius (1790 - 1868) — also the discoverer of
the famous eponymous nonorientable surface — was the first to consider the twisted cu-
bic systematically as a space curve in his 1827 book Der barycentriche Calcul, [9]. His
broader subject there was essentially an approach to what we know as projective ge-
ometry and he applied those methods to study plane and space curves. Michel Chasles
(1793-1880) also made important early contributions concerning twisted cubics. Ac-
cording to William Rowan Hamilton in [6], the name “twisted cubic” was proposed
somewhat later by George Salmon (1819 - 1904), the author of a number of influential
early algebraic geometry textbooks. The word “twisted” in this context simply refers
to the fact that the curve does not lie in any single plane in three-dimensional space.
Mathematics written in English has tended to follow Salmon’s suggestion, but French
mathematicians mostly call these cubiques gauches (hence the title of Hamilton’s note
[6]), while Germans settle for the more prosaic kubische Raumkurven.

A modernized presentation of (one aspect of) Mdbius’ approach looks something
like this. The affine three-dimensional space k3 over any field & can be viewed as an
open subset of the projective 3-space P> where the points are described by homoge-
neous coordinate vectors:

[1’0:.7]1 11'2:.%'3]

with x; € k, not all equal to zero and where two homogenous coordinate vectors
represent the same point if one differs from the other by a nonzero constant scalar
multiple A € k*:

[Xo @y s o x3) = [Awg 2 Ay @ Awg 1 Aws].

The set of points with 5 = 1 gives a subset of P in one-to-one correspondence with
the affine space k. We get similar projective spaces of any dimension n by considering
the nonzero n + 1 tuples modulo the nonzero scalar multiples as above.

With homogeneous coordinates, in modern presentations of algebraic geometry, the
twisted cubic is often described as the 3-tuple Veronese embedding of the projective
line IP*. This means that we consider the projective parametrization mapping

v:pP' — P? (3.1

[to s t1] — [to : toty : tot? - t3],
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and the image of v is the projective twisted cubic. We recover the affine curve from
(1.1) by taking the image of the subset of P! with ¢, = 1 and omitting the first com-
ponent 2o = t3 = 1 in the projective parametrization (3.1). Note that the coordinate
functions here are a vector space basis for the homogeneous polynomials of degree 3
in g, t;. Moreover, the following homogeneous implicit equations are satisfied on the
image v(P1). If [zg : ©y : @ @ @3] = [t3 1 t2ty : tot? : £3], then

ToTo — wf =0, Toxs — T1x2 = 0, T123 — x% = 0. (3.2)

After renaming the variables, we have exactly the same three homogeneous equations
seen in (2.3) above in the discussion of Menaechmus’ work on the duplication of the
cube.

These projective curves have some beautiful geometric properties that become sur-
prisingly regular when we take the field to be C or any other algebraically closed field.
It was properties such as these that were the focus of the 19th century geometers such
as Salmon, Chasles, Jakob Steiner (1796 - 1863), Luigi Cremona (1830 - 1903), and
others.

We say a curve C' C PP? has degree n if (counting with multiplicity) a plane L meets
C in n points. For instance, every plane

apTo + a1x1 + Ao + asxs = 0
in P intersects the twisted cubic C' = v(P') from (3.1) at the points satisfying
Cbotg —+ altgtl -+ agtot% + agt? = 0

By the “Fundamental Theorem of Algebra” any homogenous polynomial in two vari-
ables factors completely into linear factors over C. Hence taking the multiplicity from
the factorization, we see that L meets C' three times and hence C' has degree 3. Fol-
lowing this train of thought,

* Every collection of 4 points on C' spans P2, (Vandermonde determinants give the
fastest proof.)

* The twisted cubics are the curves of minimal degree in P? that do not lie in any
plane. (Curves of degree 1 are lines that are contained in infinitely many planes in
IP3. On the other hand, if C has degree 2 and we take any three noncollinear points
on C, they determine a plane L, but then L N C contains at least three points, so C'
must lie entirely in L.)

* Linear changes of coordinates in P! (given by invertible 2 x 2 matrices modulo
scalar matrices) and IP* (given by 4 x 4 invertible matrices modulo scalar matrices)
yield curves that are projectively equivalent to the curve in (3.1). It follows that there
is a 15 — 3 = 12-dimensional family of twisted cubic curves in P2, all projectively
equivalent.

* Any irreducible curve of degree 3 in P? that does not lie in a plane is one of these
curves.

* There is a twisted cubic curve passing through any 6 points in P? in general position
(no 4 coplanar).

* Every secant line to a twisted cubic C' meets C' in exactly two points; the collection
of all secant lines containing any one point on C' sweeps out a quadric cone con-
taining C'. The surfaces defined by the first and the third equations in (3.2) have this
form.
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* (The “Steiner construction.”) Let L1, Lo, L3 be three general lines in P2. Each line
L; is contained in a 1-parameter family of planes II; (¢, t1), parametrized by P'.
Fix three such parametrizations and look at the curve swept out by the intersections

Iy (to, t1) N Ia(to, t1) N I5(to, t1)

as [to : t1] runs through the points of P'. Then the resulting curve is a twisted cubic.
For instance if the three lines are

L]_ Ly =T = 0
L2 X1 =T = 0
L3 X9 = T3 = 0,
then the planes II; can be written as
H1 : tol'() + t1$1 =0
H2 : toJZ‘] + tl.’EQ =0
H3 : tol’g + t1$3 =0.

A point [z : 71 : @5 : w3] € P3 gives a system of equations with a solution corre-
sponding to a single point [t : t;] € P* if and only if ¢, and ¢, are not both equal
to zero, which means the rank of the matrix satisfies

o X1
rank | x1 a2 | <1. (3.3)
Ty XT3

Setting the determinants of three 2 X 2 principal minors equal to zero gives the
conditions

ToTo — mf =0, Toxs — T1x2 = 0, T1X3 — acg =0.

These are exactly the equations given in (3.2) above. For a vast generalization, see
the discussion of Steiner constructions in [5].

4. A SIDE TRIP INTO DIFFERENTIAL GEOMETRY AND AN UNEXPECTED
APPEARANCE OF THE TWISTED CUBIC Something close to the modern form
of differential geometry of space curves was developed independently by Jean Fréderic
Frenet (1816-1900) and Joseph Alfred Serret (1819 -1885). Frenet’s work came as part
of his 1847 Ph.D. thesis Sur les fonctions qui servent a déterminer [’attraction des
sphéroides quelconques. Programme d’une theése sur quelque propriétés des courbes
a double courbure. Serret’s work followed closely in his 1851 paper Sur quelques
formules relatives a la théorie des courbes a double courbure. The “double curvature”
appearing in both titles is a reflection of the realization that, unlike the case of plane
curves where a single curvature function suffices to describe the geometry of a curve
in its ambient space, curves in R? require two such functions, now usually called the
curvature and the forsion. Classic texts such as [4] follow Frenet and Serret’s presen-
tation quite closely. It is instructive to compare the derivation leading to equations in
(50) on page 17 in Chapter I of [4] with modern derivations. Eisenhart’s version of
the Frenet-Serret formulas gives component-wise expressions for the derivatives with
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respect to arc length of the unit tangent vector T = («, 3,7y), the principal normal
vector N = (I, m, n) and the principal binormal vector B = (A, i, ) in the form

e
A3

where p is the radius of curvature and 7 is the negative of the reciprocal of the usual
torsion. Using these, in equations (53) on page 18 of [4], Eisenhart derives Taylor
series expansions of the arclength-parameter coordinate functions of a general curve
in R? locally near a point (taken to be (0, 0,0)) if the unit tangent is taken to point
along the positive x-axis and the principal normal points along the positive y-axis:

1
r(s)=8— —8+---

6p
(S)_i—lﬂl83+ 4.1)
Y 20 6p ’
1 3
Z(S)__G;TTS + e

Here, for simplicity, we write p and 7 for the values of those functions at s = 0, and
p is the derivative of the p function at s = 0. All terms in the portions of the series
represented by the ellipses contain s* and higher powers of s. If we ignore those terms
of higher order in s, this parametrization describes a twisted cubic, essentially the
image of a parametrization like the one in (1.1) (but rewritten in terms of the arc-length
parameter s) under a certain invertible linear change of coordinates in R*. Hence the
twisted cubic has made a surprise appearance here as a sort of universal approximate
local model for general points on (non-planar) space curves. “General” here means,
of course, that neither the radius of curvature nor the radius of torsion can vanish.
Eisenhart goes on to exploit this observation to derive, among other things, properties
of the tangent developable surface of a general curve.

5. THE TWISTED CUBIC IN HILBERT’S “UBER DIE THEORIE DER AL-
GEBRAISCHEN FORMEN” By the time David Hilbert (1862-1943) wrote his
epochal article “Uber die Theorie der Algebraischen Formen” ([7]) in 1890, algebraic
geometry had progressed far beyond study of individual curves such as the twisted
cubic. The theory of curves of arbitrary genus was well advanced through the syn-
thesis of Riemann’s results on complex functions on compact Riemann surfaces and
Dedekind and Weber’s algebraic reformulation in terms of function fields. Kronecker
had begun the general study of the correspondence between homogeneous ideals in
polynomial rings and varieties in P™. A vibrant school of Italian algebraic geome-
ters centered around Castelnuovo, Enriques, and (later) Severi was closing in on a
classification of algebraic surfaces over C up to birational equivalence and looking to
extend those results to higher-dimensional varieties. At the same time, invariant theory
had exploded into a central mathematical subject with strong connections to algebraic
geometry.
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Hilbert’s article is devoted to the study of what we now call homogeneous ideals in
polynomial rings, although in intuitive terms, what he is really doing is linear algebra
over polynomial rings. His Theorem I is the celebrated “Hilbert Basis Theorem” that
asserts the existence of a finite generating set for any such ideal. After proving it in
general by an inductive argument on the number of indeterminates, Hilbert proposes
to illustrate the general statement by means of an “anschauliches Beispiel” — a clear
example. For this he turns to the question of determining the complete system of ho-
mogeneous polynomials F'(zg, 1, T2, x3) vanishing on a given space curve. Special-
izing again, he turns to our main character, the trusty projective twisted cubic curve.
He gives the three quadrics from (3.2) and then shows that any I’ vanishing on the
twisted cubic must satisfy

F = Al . (.’I,'().’I}Q — LE?) + Ag . (.’L’Oxg — 1'1.%'2) + Ag . (1'1.1'3 — .’I)g)

for some homogeneous polynomials A;, A,, A3, or in other words, that the quadrics
generate the ideal of all such polynomials F'. The ingenious, seemingly ad hoc, argu-
ment is as follows. By using the three quadrics to eliminate terms containing xy and
T together, xq and x5 together, or x; and x3 together, any such F' can be rewritten as
an element of the ideal generated by the quadrics plus a “remainder”

*_E: KO K1 E: A1 A2 E: H2 13
F —_— Cnoﬁlxo ajl + C>\1>\2{E1 .Z'2 + CH2N3‘%’2 .%'3 9

KQ,K1 A1,A2 M2, 13

where the coefficients Cl, ..., Cx; 5,5 Ciy 5 are constants. Since F' and the quadrics

are homogeneous, the same is true of F', and hence kg + k1 = A1 + Ay = o + pz in
every term. But now we can substitute the component functions for the homogeneous
parametrization of the twisted cubic from (3.1). When we do this substitution,

TR0 s goroteL
xiqx;o — t3A1+>\2ti\1+2>\2

l,gzxgs s tgz t§u2+3/t3‘
Since ko + k1 = A1 + A2 = o + p3, the exponents of ¢, in each of these terms must
be distinct. Hence the only way this remainder F' can vanish at all points of the twisted
cubic is if all the coefficients Cl .., Cx; .ay» Cuy,ps €qual zero. (Hilbert is making
the implicit assumption that the coefficient field of the polynomials is infinite in this
argument.) The process of finding the “remainder” F' can be done algorithmically by a
multivariable version of polynomial division using a monomial order, as explained, for
instance in [2], though Hilbert apparently just understands that such a representation
is possible by looking at the polynomials involved.

Theorem III in Hilbert’s paper is another landmark result, the “Hilbert Syzygy The-
orem,” which in modern language states that any finitely generated module M over
the polynomial ring S = k[xo, ..., x,] has a finite free resolution of length at most
n + 1. That is, there is an exact sequence

0O —Fyy —F ——F —F—M-—70

where the F; are free modules over S and the mappings can be described by matri-
ces with polynomial entries. For example, when M = (fy,..., f;) is an ideal in S,
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we would take Fy = S* and the mapping F, — M defined by multiplication of a
column vector in S* by the 1-row matrix

(f1 f2 ft)

Hilbert was concerned as always with homogeneous ideals and his key insight was
that free resolutions encode a tremendous amount information about them. When M
is an ideal in S, in particular, using a free resolution, one can compute the Hilbert
function — the function of an integer variable s > 0 giving the dimension of the vector
subspaces of the homogeneous ideal in each degree s.

Once again he turns to the twisted cubic, this time to compute an explicit example
of a free resolution. The first observation is that using the generators (3.2) for the ideal
I of polynomials vanishing on the twisted cubic, then there are obvious elements of the
kernel of S — I coming from the fact that the three quadrics are the determinants
of the 2 X 2 minors of the matrix from (3.3). Adjoining another copy of either column
at the left yields 3 x 3 matrices

To To I1 Ty To Iy
Tr1 1 X2 and Tog X1 X2
Ty Tz I3 T3 Ty I3

that automatically have determinant zero because of the repeated columns. Expand-
ing along the first column gives, as Hilbert says, two different solutions of the linear
equations in new variables X, X5, X3:

(woxe — 22) X, + (T3 — T102) Xo + (2123 — 23) X3 = 0, (5.1)
namely
(X1,X27X3) = (3327 —3317330) and (X1,X2,X3) = (373, —35271’1)- (5.2)

For typographical reasons, we are writing these as row vectors, but they should really
be thought of as the columns of a 3 X 2 matrix

U €3
A= —Ir1 —X2
Zo ]

That matrix fits together with the 1-row matrix B consisting of the three quadrics in a
sequence of mappings

s Ay e3 Bor .

where BA = 0 (that is, the image of A is contained in the kernel of B).

Hilbert next shows that the image of A is all of the kernel of B. If (X, X, X3) is
any solution of (5.1), then any terms in X3 containing x5 can be cancelled by subtract-
ing a multiple of the first solution in (5.2), and then any remaining terms involving 3
can be cancelled by subtracting a multiple of the second. This yields another solution
(X7, X5, X3) of (5.1) where X depends only on xy and x;. The equation (5.1) is an
identity of polynomials so we can now set zo = x3 = 0 in the equation

(xozs — 1) X| + (w023 — T112) Xy + (2123 — 23) X5 =0
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yielding an equation that shows X| = 0. It then follows that X, = —Q (123 — )
and X}, = Q(zox3 — x122) for some polynomial (), possibly containing all four of
the variables. Hence

(X17X§7X§) = (0, Q($1$3 - 553)7 —Q(%u’Us - 951332))
= (—=Qw3) (w2, =11, 70) + (Qr2) (73, —T2,71),

which shows that (X7, X5, X}), and therefore (X, X5, X3) also, are in the S-module
generated by the two solutions (5.2).

It remains to consider the kernel of the mapping defined by the matrix A. Any
column vector (Y7, Y5)" in the kernel of A would satisfy

0 = 2Y1 + 23Y5
0=2Y] + 2.Y5
0=2Y; + 2,Y5.

The only polynomials that satisfy these three equations simultaneously are Y; = Y, =
0. Hence we have a free resolution of the ideal of the twisted cubic

0— 82253 B o

Note that in this case, the free resolution is shorter than the upper bound on the
length from the Syzygy Theorem. From the general proof of that theorem, it seems
clear that Hilbert understood that a similar early termination of the process of com-
puting the resolution would happen whenever the generators of an ideal are the deter-
minants of the m X m minors of an (m + 1) X m matrix, though he (interestingly)
never explicitly says that. When k& = C (or another algebraically closed field) and the
ideal I defines a subvariety of P" of codimension 2 (as is true for the twisted cubic),
and [ has a free resolution of the form

0—»8m 24y gm+t Bor 4y,

then it is not difficult to see that the ideal [ is generated by the determinants of the m x
m minors of the (m + 1) X m matrix A. The condition that guarantees the existence
of such a resolution was proved later by L. Burch in [1]. This happens exactly when
the quotient ring S/ is Cohen-Macaulay of codimension 2.

The final section of Hilbert’s paper is devoted to the application of these methods
to the proof of the finite generation of the ring of invariants of binary forms of a fixed
degree. Paul Gordan (1837 - 1912), who devoted much of his career to explicit and
arduous computations of those invariants, was supposedly not impressed by Hilbert’s
non-constructive proof, reportedly (and famously) remarking “this is not mathematics,
this is theology.” The evidence for saying this anecdote reflects something that actually
occurred is rather skimpy, though. In any case Hilbert’s paper is a milestone in modern,
“abstract,” algebra, and the twisted cubic played a conspicuous role in making these
ideas accessible to Hilbert’s readers.

6. THE TWISTED CUBIC IN APPLICATIONS In recent years, the twisted cubic
has continued to show up, Zelig-like, in many important areas of mathematics. As is
also true for the subject as a whole, applications of various sorts have assumed greater
prominence during this time.
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The first example we will consider deals with the so-called Bézier cubic curves in
R2. These are named after Pierre Bézier (1910 - 1999), who was a design engineer at
the Renault auto works in France. He invented these curves (and surfaces derived from
them) as a way to describe and manipulate shapes of portions of automobile bodies,
especially via computer-based design and manufacturing. Given four control points,

i = («Tz‘,yz‘)

1 = 0,1, 2,3, in the plane, the corresponding Bézier cubic curve has the parametriza-
tion:

p(t) = ZpiBi(t) 6.1)

for t € [0,1]. Here By(t) = (1 —t)?, By(t) = 3(1 — t)*t, By = 3(1 — t)t?, and
Bs(t) = t? are the three one-variable so-called Bernstein basis polynomials. (In geo-
metric design, the products B;(t) are known as the “blending functions™ that take the
given control points and define the Bézier curve.)

As seen in the Figure 2, the position of the control points affects the shape of the
resulting curve in interesting, but entirely predictable, ways once the patterns are un-
derstood. In these plots, py = (1,0) and p3 = (0, 1) in all cases. The locations of the
other control points are shown in the plots and the coordinates are given in the cap-
tions. Note that some of these curves will be smooth, while others such as the curve in
(b) will have ordinary double points, or nodes, and still others such as the curve in (c)
will have cuspidal double points. It is not difficult to see from (6.1) that:

* Astincreases from 0 to 1, the curve ¢(t) starts from ¢(0) = py and ends at p(1) =
bs.

* The vectors popi and pop3 determine the tangents ¢’(0) and ¢’ (1) respectively.

* The curve ¢(t) lies entirely within the convex hull of the set of control points
{p07plap21p3}'

All this makes Bézier curves very suitable for designing shapes, but where is the
twisted cubic? Well, notice that the four functions By (t), By (t), B2(t), B3(t) are also
a basis of the vector space of polynomials of degree 3 or less in ¢. Hence if we consid-
ered

®(t) = (Bo(t), Bi(t), Ba(t), Bs(t)) (6.2)

the resulting parametric curve would be a twisted cubic. in the hyperplane o + z; +
Ty + r3 = 1in R*. Taking ¢ € [0, 1] gives a segment of that curve. Now the different
Bézier curves we saw in Figure 2 are, in fact, just linear projections (not necessarily
orthogonal projections) of that twisted cubic into R? where the control p; = (z;, y;)
points define the projection matrix:

p_ (a:l T2 T3 :U4> .
Y1 Y2 Ys Ya
It is easy to check that the matrix product P® ()7 (multiplying by the transpose of

®(t) from (6.2)) gives the planar parametric curve from (6.1), written as a column
vector. The nodal and cuspidal singularities are exactly the sorts of singular points
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Figure 2. Bézier cubics with control points and polygons

we get on the planar projections of the twisted cubic in R®. Hence Bézier cubics are
nothing but the different “shadows” of a twisted cubic in a plane.

Finally, one of the key ideas in the emerging field of algebraic statistics (the forth-
coming book [12] by Seth Sullivant is an excellent snapshot of the current state of this
subject) is that when probabilities for discrete random variables depend polynomially
on some parameters, we can think of those parametrized families of probability dis-
tributions as algebraic varieties. If a (collection of) random variable(s) X with values
s € Shas P(X = s) = g,(01, ..., 0,) for some parameters ¢, then we can consider
the mapping

¢ :R" - RS
0= (01,...,0,)— (gs(0) : s €8)

We will also assume that the g; are polynomial, or at worst rational functions of 6. By
standard results, this implies that ¢(IR™) is a subset of some algebraic variety in RS.
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Given such a ¢, the corresponding model is the set

e(R")NA

where A is the probability simplex in RS (the set of vectors with non-negative entries
summing to 1).

For instance, if X is a binomial random variable based on n trials, with success
probability 6, then X takes values in {0, 1, ..., n} with probabilities given by:

P(X = k) = p(0) = (Z) 08 (1 — 0)"*.

This defines a mapping

¢ :R— R"!
9 = <p0(0)7p1(9)7 s 7pn(0))

Since ), p;(#) = 1, the image p(R) is a curve in the hyperplane >, p; = 1. If
0 € [0,1], then p(f) € A, 11, the probability simplex defined by >, p; = 1, and
p; > 0fori =0,...,n. What curve is this? For general n, we get a rational normal
curve of degree n in a hyperplane in R"*!, the direct generalization of the twisted cu-
bic to higher-dimensional ambient spaces (but with a slightly nonstandard parametriza-
tion because of the binomial coefficient factors). The case n = 3 gives nothing other
than the (or better, perhaps, a) twisted cubic. People have studied binomial probabili-
ties since Jacob Bernoulli’s Ars Conjectandi (1713) at least and the twisted cubic and
related curves have been there all along.

7. IN CONCLUSION This is hardly the end of the ways the twisted cubic and its
generalizations pop up in unexpected places. For instance, I thank Hal Schenck for
the suggestion that the reader may also enjoy looking up the n-dimensional cyclic
polytopes C(n,d), the convex hulls of n > d distinct points on the rational normal
curve in R? parametrized by

(t, 12,83, t%).

The boundary of C(n, d) has the largest number of faces in each dimension among
all simplicial spheres of dimension d — 1 with n vertices, a fact established by Peter
McMullen for simplicial polytopes and by Richard Stanley for simplicial spheres. See
[13] for an introductory discussion and further references.

I think it is examples like the case of the twisted cubic that make many mathemati-
cians into “naive Platonists” (see for instance, [3]). The ways this basic curve has reap-
peared in so many different contexts makes it easy to think that mathematical objects
have an existence of their own, independent of humans, and that we merely discover
those objects and their properties. Of course, it could also be argued that structures
like this are simply part of the way humans think so the fact that they get reused and
rediscovered is not, after all, that surprising. Without taking sides in that philosophical
debate, I would simply leave you with the observation that it’s rather amazing how of-
ten the twisted cubic and things related to it have occurred in some of the most central
developments in geometry and its applications.
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