
Katherine and Victoria,

Both your presentation and your final project paper were good, but I think it was
probably not necessary to include some of the probability definitions in the first section
(you never used them later). I was also hoping to see more about the connection between
varieties and statistical models, especially in the paper. You did include the binomial
probability models with n = 3, but another example like the m× n independence models
or some other example would have been a better choice to round out the paper. You con-
centrated quite heavily on maximum likelihood estimation, and that is one very important
side of the story. However, the examples you did of that did not really require any of
the computational algebra techniques we discussed (see below, especially Comment 10),
so they weren’t the best examples to use to make your points.

Specific Comments:

1. In looking over things, I see that your history is not quite accurate here. The in-
volvement of Persi Diaconis in this story is really through an article he wrote with
Sturmfels quite a bit before the 2003 conference that led to the Algebraic Statistics

for Computational Biology book. That article was “Algebraic algorithms for sampling
from conditional distributions.” Ann. Statist. 26 (1998), no. 1, 363397. The idea
there was that one can use Gröbner techniques to produce Markov bases for sampling
from the collection of contingency tables with given marginals to do hypothesis testing
in situations where χ2 distributions are not sufficiently accurate, but Fisher’s Exact
Test is unfeasible because there are too many tables to consider. (I discussed this
briefly with Katherine the day of the Sulski Lecture.) The second main author of the
Algebraic Statistics for Computational Biology is Lior Pachter, not Persi Diaconis.

2. This is mostly a writing point. When you want to define a term this way, it’s really
better to paraphrase than to use a direct quotation (especially if the quote doesn’t fit
with your sentence). Say something like: Let Y be a continuous random variable. We

say f(y) is the pdf of Y if P (a ≤ Y ≤ b) =
∫ b

a
f(y) dy. (and then give the reference).

3. MLE is really a standard probability or statistical technique (that is, not specific to
algebraic statistics). The algebraic viewpoint gives other tools to compute maximum
likelihood estimators.

4. The variable of interest for a binomial experiment is the number of “successes” in the
n trials.

5. Statisticians would write p̂ = y

n
. The notation p̂ denotes the estimator for the model

parameter p. (You need to keep those two things separate as you think about this!)

6. You’re not really “expanding out” anything here. You are collecting the values of the
binomial pmf into a vector.
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7. The xi are the different values of the pmf as functions of p and y = 0, 1, 2, 3. They
are probabilities, not outcomes. The idea here is that you are writing the pmf in a
different form, as a function of the model parameter p. The vectors you get all lie on
the variety given at the bottom of the page. Note, though, that not every point of
the variety is obtained since the 0 ≤ xi ≤ 1. The fancy way to say this is that the
probability model is the intersection of the variety and the probability simplex in R

4.
The probability simplex is the set

{(x1, x2, x3, x4) : 0 ≤ xi ≤ 1, x1 + x2 + x3 + x4 = 1}

8. This is really a general binomial probability model, including all of the different bi-
nomial distributions for different values of p. It’s a parametrization of all possible
binomial distributions.

9. I’m not sure what you meant here. It’s definitely not true that a large sample implies
independence in general. If you meant to say that if the Yi are independent, you can
handle even very large samples of data, then OK. But that’s not exactly what you
wrote.

10. The maximum likelihood estimators for µ and σ in the normal model can be derived
using just multivariable calculus. Here’s how it works. (I’m going to treat the variance
σ2 as a parameter in its own right, not think of it as the square of the SD.) Since

ln(L(y1, . . . , yn|µ, σ
2)) =

−n

2
ln(σ2)−

n

2
ln(2π)−

1

2σ2

(

n
∑

i=1

(yi − µ)2

)

,

taking partial derivatives and setting them equal to zero, we get

∂ ln(L)

∂µ
=

1

σ2

(

n
∑

i=1

(yi − µ)

)

= 0

∂ ln(L)

∂σ2
=

−n

2σ2
+

1

2(σ2)2

(

n
∑

i=1

(yi − µ)2

)

= 0

The first equation implies the MLE for µ is:

µ̂ =
1

n

n
∑

i=1

yi = y

(the sample mean). Substituting that into the second equation and solving for σ2, we
get

σ̂2 =
1

n

∑

i=1

(yi − y)2,
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which is (one form of) the the sample variance. (It’s the biased form of the estimator;
the constant multiple

1

n− 1

∑

i=1

(yi − y)2

is the unbiased form.) You can check, using the Second Derivative Test for functions
of two variables, that this is a maximum of the log-likelihood function L. Note that I
didn’t need to use any different techniques here for different n. This is a completely
general argument and it works equally well whatever n is.
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