I. (20) Let $Y_{1}, \ldots, Y_{n}$ be independent samples from the distribution with pdf containing the unknown parameter $\theta$ :

$$
f(y \mid \theta)= \begin{cases}\frac{1}{\theta} y^{1 / \theta-1} & \text { if } 0<y<1 \\ 0 & \text { otherwise }\end{cases}
$$

Determine the maximum likelihood estimator for $\theta$ using the $Y_{i}$.

Solution: The log-likelihood function is:

$$
\begin{aligned}
\ln (L) & =\ln \left(\frac{1}{\theta^{n}}\left(y_{1} \ldots y_{n}\right)^{1 / \theta-1}\right) \\
& =-n \ln (\theta)+(1 / \theta-1) \sum_{i} \ln \left(y_{i}\right)
\end{aligned}
$$

So

$$
\begin{gathered}
0=\frac{d}{d \theta} \ln (L)=\frac{-n}{\theta}-\frac{1}{\theta^{2}} \sum_{i} \ln \left(y_{i}\right) \\
\Rightarrow \widehat{\theta}=\frac{-\sum_{i} \ln \left(y_{i}\right)}{n}
\end{gathered}
$$

(It can be checked that this is a maximum for the likelihood by the second derivative test.)
II. A machine shop manufactures toggle levers. Let $d$ be the proportion of defectives in the shop's output. A random sample of size $n=150$ toggle levers produced 6 defectives.
A) (10) Find a $95 \%$ confidence interval for $d$ using this information.

Solution: Since $n=150$ we use the large sample formula, and $z_{.05 / 2}=1.96$. The confidence interval is

$$
\begin{aligned}
d & =\frac{6}{150} \pm 1.96 \sqrt{\frac{(6 / 150)(144 / 150)}{150}} \\
& =.04 \pm .03136
\end{aligned}
$$

(Note that this interval contains only positive numbers.)
B) (10) Test the hypothesis $H_{0}: d=.1$ versus $H_{a}: d \neq .1$ using this data. Take $\alpha=.02$ (probability of Type I error). Also give the $p$-value of your test.

Solution: Again, since $n=150$, we use a $z$-test. The test statistic is

$$
z=\frac{.04-.10}{\sqrt{\frac{(.1)(.9)}{150}}}=-2.45
$$

The rejection region for the two-tailed test $\left(H_{a}\right.$ is $\left.d \neq .1\right)$ is

$$
R R=\{z:|z|>z .01=2.33\}
$$

So we reject $H_{0}$ at the $\alpha=.02$ level. The $p$-value is $p=2(.0071)=.0142$ from the standard normal table with $z=2.45$.
C) (10) For the test in part B, what is $\beta$ (probability of Type II error) if the true value of $d$ is .03?

Solution: We find $\beta$ as follows from $z=\frac{Y / n-.01}{\sqrt{\frac{(.1)(.9)}{150}}}$ as above, using the fact that $d$ is really .03 (so $Y / n$ is approximately normal with mean .03 and variance $\frac{(.03)(.97)}{150}$ ):

$$
\begin{aligned}
\beta & =P(T S \notin R R \mid d=.03) \\
& =P(-2.33<T S<2.33 \mid d=.03) \\
& =P(.0429<Y / n<.1571) \\
& =P\left(\frac{.0429-.03}{\sqrt{\frac{(.03)(.97)}{150}}}<z<\frac{.1571+.03}{\sqrt{\frac{(.03)(.97)}{150}}}\right) \\
& =P(.9281<z<9.144) \\
& =P(z>.9281)-P(z>9.144) \\
& \doteq .1762-0 \\
& =.1762
\end{aligned}
$$

III. Consider the following measurements of the heat-producing capacity of the oil produced by two fields (in billions of calories per ton):

| Field 1 : | 8.26 | 8.13 | 8.35 | 8.07 | 8.34 |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Field 2 : | 7.95 | 7.89 | 7.90 | 8.14 | 7.92 | 7.84 |

A) (10) Estimate the variance $\sigma^{2}$ of the heat producing capacity of the oil from each field.

Solution: Use the usual unbiased estimator formula for the sample variance:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}
$$

This gives

$$
s_{1}^{2} \doteq .01575 \quad s_{2}^{2} \doteq .01092
$$

B) (10) Test the null hypothesis $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2}$ against the alternative $H_{a}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$ at the $\alpha=.05$ level. State your conclusion clearly and succinctly.

Solution: To test equality of variances, we use an $F$-test. The test statistic is $f=$ $s_{1}^{2} / s_{2}^{2} \doteq 1.44$. The rejection region for a test with $\alpha=.05$ is

$$
\left\{f<f_{.975}(4,5)\right\} \cup\left\{f>f_{.025}(4,5)\right\}
$$

From the $F$-table we have $f_{.025}(4,5)=7.39$ and $f_{.975}(4,5)=1 / f_{.025}(5,4)=1 / 9.36=$ .1068. 1.44 is not in the rejection region, so there is not enough evidence here to indicate that the variances are different.
C) (15) Construct a two-sided $95 \%$ confidence interval for the difference of the population mean heat producing capacities $\mu_{1}-\mu_{2}$.

Solution: (Under assumption variances equal) we use the pooled estimator

$$
s_{p}^{2}=\frac{(4)(.01575)+(5)(.01092)}{9}=.01307
$$

Then the confidence interval is

$$
\begin{aligned}
\overline{Y_{1}}-\overline{Y_{2}} \pm t_{.025}(9) \sqrt{s_{p}^{2}(1 / 5+1 / 6)} & =8.23-7.94 \pm(2.262) \sqrt{(.01307)(1 / 5+1 / 6)} \\
& =.29 \pm .1566
\end{aligned}
$$

IV. (15) Let $\left(x_{i}, y_{i}\right), i=1, \ldots, n$ be a collection of data points. Using the matrix formulation, derive the normal equations for the least squares estimators for the coefficients $\beta_{0}, \beta_{1}$ in the model $Y=\beta_{0}+\beta_{1} x+\varepsilon$ fitting the data.

Solution: We have

$$
X=\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right) \quad Y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right)
$$

So the normal equations are

$$
\begin{aligned}
X^{t} X \beta & =X^{t} Y \\
\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right) \beta & =\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n}
\end{array}\right)\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right) \\
\left(\begin{array}{cc}
n & \sum x_{i} \\
\sum x_{i} & \sum x_{i}^{2}
\end{array}\right)\binom{\beta_{0}}{\beta_{1}} & =\binom{\sum y_{i}}{\sum x_{i} y_{i}}
\end{aligned}
$$

Extra Credit (10) In the situation of question III part C above, suppose you had $n=50=m$ measurements from each oil field instead of $n_{1}=5$ and $n_{2}=6$. What, if anything, would change in the method you would use? Explain.

Solution: With 50 measurements from each oil field, you could use the large sample formula. The $t_{\alpha / 2}$ would be replaced by $z_{\alpha / 2}$. Moreover, for the large sample test, it is not necessary to assume that the individual variances are equal, so you do not need to use the pooled estimator for the variance:

$$
\overline{Y_{1}}-\overline{Y_{2}} \pm z_{.025} \sqrt{s_{1}^{2} / 50+s_{2}^{2} / 50}
$$

