The Statistics Supplement to Maple

(Reprinted from “Probability and Statistics: Explorations with Maple”, (1999, with permission from Prentice Hall, Inc.)

The statistics supplement to Maple consists of about 130 procedures written specifically to promote explorations of probabilistic and statistical concepts. Here we describe in some detail how each of these procedures is to be used.

Because of the level of detail, we do not recommend that this Appendix be read carefully and in its entirety. It would be best if on an initial perusal, the reader obtains a general sense of the types of procedures that are available and how these procedures are used. Later, when a need for a particular procedure arises, more specific information can be obtained either through the on‑line help system (? procedure name) or by referring to the appropriate portion of this Appendix.

B.1 The List Data Structure

Before you consider the details of how to use the statistics supplement, it is important that you understand the data structures on which almost all the procedures operate. The "list" structure that is part of the Maple system is the underlying data structure that is used in almost all the procedures of the supplement. A list in Maple consists of "[", followed by a list of objects separated by commas, followed by "]". Thus,

L := [1,2,3];

defines a list (named L) consisting of the numbers 1, 2, and 3. The entries of a list need not be numbers; in fact, they do not even have to be of the same type. The statement

M := [x,5,Pi,1+5*x*y];

gives the name M to a list with symbolic as well as numeric entries. It is also possible, and sometimes desirable, to construct a list consisting of lists as in

N := [[1,2,3],[2,1,5],[6,5,4,3,2,1]];

In this case the first entry of N is the list with entries 1, 2, and 3.

A specific entry of a list can be accessed through indexing; L [3], for example, refers to the third entry of the list L. In the case of the List N, N[1] is itself the list [1, 2, 3]. You can access the second entry of N [1] either through X : = N [1] ; followed by X [2] ; or more directly through N [1] [2] ; . Thus, if you want the sum of the elements in the third sublist of N, you can give the command

sum(N[3][i], i = I .. 6);

Since you will often use large lists (lists with many entries), you will need to extract some basic information from a list and be able to perform various operations on lists. One of the most commonly needed attributes of a list is the number of entries in it. This is obtained by nops (L);, where L is a list. For the list N of the previous paragraph, nops (N) ; gives 3, whereas nops (N [3] ) ; gives 6.

The Maple seq command can be used to perform a variety of operations on lists. For example, if you have a list, L, and want to construct another list, M, whose entries consist of the squares of the entries in L, you can use

M := [seq(L[I]^2, i = 1 .. nops(L))];
The Maple seq command has an alternative form that does not require an index i. It is useful when only the numbers inside the list are important. In the form

M := [seq(x^2, x = L)];

x represents an element of the list L. The sequence then contains the square of each of the elements of L.

B.2 Procedures for Descriptive Statistics

· Mean(L): This procedure returns the mean (arithmetic average) of its argument. If the argument is a list, then the mean of the entries of the list is returned. For example,

M := [1,2,3,43]; 

Mean(M);

                 will produce 5/2 and

      
N := [x,3,1+x]; 

      
Mean(N);

will produce 2/3 x  +  4/3. This procedure will also accept a frequency list as its argument. A    frequency list is a list of lists of the form [[x1,f 1] , [x2,f2], .. , [xk, fk]], indicating the occurrence of x1 f I times, x2 f 2 times, etc.

· Variance (L): The argument L must either be a list or a frequency list (defined above). This procedure returns the variance of the list L or the variance associated with the frequency list. For the lists M and N defined above, Variance (M) ; and Variance (N); will yield, respectively, 5/3 and

             1/2 x^2 + 9/2 + 1/2 (1 + x)^2 ‑ 1/6 (2 x + 4)^2

· StDev(L): The argument L must either be a list or a frequency list (defined in Mean above). This procedure returns the standard deviation of the list L or the standard deviation associated with the frequency list.

· Max(L): Returns the maximum value of the entries of the list L. If the list consists of numeric values, the result will be numeric; if the list has symbolic entries then the result will be in symbolic form. For the lists M and N defined above, Max(M); and Max(N); will give 4 and

             max (3, 1 + x)

· Min(L): Returns the minimum value of the entries of the list L.

· Range (L): Returns the range (Max (L) ‑ Min (L)) of the entries of the list L.

· Percentile (L, p): Returns the (100p)th percentile of the entries of the list L. For example, Percenti1e (L, 0.25); will produce the first quartile and Percenti1e (L, 0.50); will produce the 50th percentile or median. This procedure requires that the entries of L be numeric.

· Median(L): Returns the median of the list L. This is a special case of Percentile.

· Skewness (L): Returns the skewness (third moment about the mean) of the data in the list L. Skewness is used as a measure of "symmetry."

· Kurtosis (L): Returns the kurtosis (fourth moment about the mean) of the data in the list L. Kurtosis is used as a measure of "tail weight."

· Freq(L, xmin . . xmax) : Produces a list of the frequencies of xmin, xmin+1, . . xmax in L. The entries of L and xmin, xmax must be numeric. For example, if L is defined by

L := [2,3,3,4,2,7,4,3,2,6]; 

then F := Freq (L, 1..7) ; will give

                          F := [0, 3, 3, 2, 0, 1, 1]

   which indicates that within the list L, the frequencies of 1, 2, 3, 4, 5, 6, and 7 are 0, 3, 3, 2, 0, 1, and   

   1, respectively.

· Locate (L, x): Returns a list of the locations within the list L that have the entry x. For example, for the list L defined above, Locate (L,3) ; will yield 

[2, 3, 8] 

      indicating that the second, third, and eighth entries of L are 3’s.

· ClassFreq(X, xmin . . xmax, NumInt): Groups the entries of the list X into NumInt equal‑sized intervals. In general, xmin should equal the lowest class boundary and xmax should equal the largest class boundary. It should be true that xmin <= Min(X) and xmax >= Max(X). If ClassFreq is used with one argument, as in ClassFreq(X), then the actual minimum and maximum values of X will be used and NumInt will be set to 8. If you want observations that are less than xmin to be counted in the first class and observations that are greater than xmax to be counted in the last class, first construct the list Y and then apply ClassFreq to Y Where Y can be constructed using

Y := [seq(max(min(X[k], xmax), xmin), k = 1 .. n)] :

      or

Y := [seq(max(min(x, xmax), xmin), x = X)] :

· RunningSum(L): Produces a list of the successive sums of the entries in the list L. The result of RurmingSum(L);, where L was defined above, will be

               [2, 5, 8, 12, 14, 21, 26, 28, 30, 36]

B.3 Random Sample Generators

· randomize(): The procedures described in this section generate random samples from continuous and discrete distributions. These procedures will produce identical results if they are invoked in the same manner and in the same order in successive Maple sessions. The randomize() procedure modifies the seed of the built‑in Maple random number generator (the modified seed is actually printed on the screen) in order to produce different random sequences in successive Maple sessions.

· RNG (n): Generates a list of n random numbers from [0, 1]. The result of RNG (4) ; will be similar to

                        [.427419669081, .321110693270, .343633073697, .474256143563]

      or

                       [.736460984003, .401594705923, .178314906195, .914825136973]

· Die(m, n): Generates a list of n random outcomes of the roll of an m‑sided die. To simulate 12 rolls of a fair 6‑sided die, Die (6, 12) ; will produce something like

                      [3, 1, 4, 6, 4, 3, 2, 5, 1, 5, 4, 4]

· DiscreteS(L, n) or DiscreteS(expr, a . . b, n): Generates a list of random observations from a discrete distribution defined through a list or through an expression. In the first case, suppose the random variable X assumes values C1, C2, ‑ ‑ ‑, Cm with respective probabilities P1, P2, ‑ ‑ ‑'pM. If L is the probability list of X (i.e., the list [cl, p1, c2, p2, ...' cm, pm]), then DiscreteS(L, n) will produce n random observations of X. For example,

                L  :=   [1,1/10,2,2/10,3,3/10,4,4/10]:

                X  :=   DiscreteS(L, 10);

will result in something like

               X := [4, 3, 4, 4, 4, 2, 2, 3, 3, 2]

If expr is a discrete p.d.f. defined on a, a+1, . . . b, then a random sample of size n from this distribution can be obtained through DiscreteS(expr,a . . b,n) ;. So another way of generating a random sample from the distribution described by L would be the following:

              f :=  x/10;

             X := DiscreteS(f, 1 .. 4, 10);

· ContinuousS(expr, a . . b, n): If the expression, expr, gives the p.d.f. of a continuous random variable on the interval [a,b], then n random observations from this distribution can be generated using ContinuousS(expr, a . . b, n) ;. For example, to generate a random sample of size four from the distribution with p.d.f. f(x) (3/2) X^2, ‑1 < x < 1, you could use

             f :=  (3/2)*x‑2;

             X :=  ContinuousS(f, ‑1 .. 1, 4);

This would result in something like

             X := [.8666989594, .9942783194, ‑.9141777341, ‑.6816613617]

The following procedures generate lists of n random observations from specific distributions. In all cases, the parameters of the distribution are given first (from the mnemonics used, you should be able to tell what each parameter stands for) and the last argument is the number of desired observations. You can use the help command to get more detailed information.

• BernoulliS(p, n)

• BetaS(alpha, beta, n)

• BinomialS(N, p, n)

• BivariateNormalS(muX, varX, muY, varY, rho, n)

• CauchyS(n)

• ChisquareS(r, n)

• DiscUniformS(a .. b, n)

• ExponentialS(theta, n)

• FS(nul, nu2, n)

•
GammaS(alpha, theta, n)

•
GeometricS(p. n)

• HypergeometricS(Nl, N2, n, m)

•
LogisticS(n)

•
NegBinomialS(r, P, n)

• NormalS(mu, var, n)

•
PoissonS(lambda, n)

• TS (nu, n)

• UniformS(a .. b, n)

B.4 Plotting Routines

· ProbHist(L) or ProbHist (expr, xmin xmax): This procedure displays probability histograms for discrete distributions. The distribution may be defined through an expression representing its p.d.f. or through a list (see DiscreteS in the previous section).

•
PlotDiscCDF(expr, xmin . . xmax): Produces a graph of the distribution function of the discrete random variable with p.d.f. expr (defined in terms of a variable, say x) for x = xmin, xmin+1, ..., xmax.

• Histogram(X) or Histogram(X, xmin xmax , NumInt): This procedure plots a histogram with NumInt equal‑sized intervals for the data defined by the list X. It is necessary that xmin <= Min(X) and xmax >= Max(X). In general, xmin should equal the lowest class boundary and xmax should equal the highest class boundary. If Histogram is used with one argument, as in Histogram(X), then the actual minimum and maximum values of X will be used and NumInt will be set to 8. If you want observations that are less than xmin to be counted in the first class and observations that are greater than xmax to be counted in the last class, then make a histogram of the list Y where

                Y := [seq(max(min(X[k], xmax),xmin), k = 1 . . n)];

   or

               Y := [seq(max(min(x,xmax),xmin), x = X)];

· PlotEmpPDF(X) or PlotEmpPDF(X, Xmin .. xmax, NumInt): Displays the empirical p.d.f. for the list X. It is necessary that xmin <= Min(X) and xmax >= Max(X). If PlotEmpPDF is used with one argument, as in P1otEmpPDF(X), then the actual minimum and maximum values of X will be used and NumInt will be set to 8.

· PlotEmpCDF(X, xmin . . xmax): Plots the empirical distribution function of the list of numbers given in X over the interval [xmin, xmax]. If all of X is not in this interval, then the interval will be expanded to cover X.

· 0give(X, xmin .. xmax, NumInt): Displays the ogive for the data described by the list X.

· PlotRunningAverage(L) : Produces a graph of the running averages in the list L.

· TimePlot (Al, A2, …, Ak): Produces a time series plot of the data represented by the lists Al, A2, …, Ak. Note: The ... is not part of the syntax of this procedure; it only designates that the procedure may have any number of arguments.

· StemLeaf (L) or StemLeaf (L, NoDigits) or StemLeaf (L, NoDigits, NoRows): The list L consists of the data for which this procedure will produce a stem‑and‑leaf display. The second argument NoDigits, if present, specifies the number of digits that will be used on the right (i.e., the leaf part); if NoDigits is not present, one to three digits will be used, depending on the data. The third argument NoRows, if present, specifies the number of rows that will be used in the display; if NoRows is not used, the number of rows will be about VIn where n is the number of elements in L.

· BoxWhisker(Al, A2, .. ., Ak): Produces a box‑and‑whisker plot for each set of data represented by the lists Al, A2, ... , Ak. Note: The ... is not part of the syntax of this procedure; it only designates that the procedure may have any number of arguments.

· QQ(L) or QQ(X. Y): This procedure produces a q‑q (quantile‑quantile) plot of the points in the list of lists, L, or in the lists X and Y. If L is used, the sample sizes must be equal and L := [[xl,yl] , [x2,y2], . . ., [xn,yn]]. If the lists X and Y are used, the two lists do not have to be of the same length.

· XbarChart(ListOfSamples)or 

     XbarChart (ListOf Means, SampleSize, MeanOfStdDevs): XbarChart displays an x-chart. If only one    argument ListOf Samples is used, it must be a list of lists, each entry of which is a sample. If three arguments are used, the first must be a list of the means of samples, each sample of size SampleSize. The third argument, MeanOfStDevs must be the mean of the standard deviations of the samples.

B.5 Regression and Correlation

· Correlation(L) or Correlation(X, Y): Returns the correlation coefficient of the points (xI, yI), (x2, y2), …, (xn, yn). If only one argument, L, is specified, then it must be a list of lists of the form [ [xl,y1] , [x2,y2] , . . ., [xn,yn] ]. If two arguments, X and Y are used, then X must be defined as the list of x‑coordinates, [x1, x2,…, xn] and Y must be defined as the list of corresponding y‑coordinates, [y1, y2,…, yn] . For example,

X :=  [1,2,3,4,5];

      Y
:=  [2,3,1,5,4];

       r := Correlation(X,Y);

   or

      L:=  [[1,21,[2,31,[3,11,[4,S],[5,41];

      r := Correlation(XY);

will give

      r := .6000000000

· LinReg(L, x) or LinReg(X, Y, x): L or alternatively X and Y must be of the type described in Correlation above and x must be a variable name. LinReg(L,x); or LinReg(X,Y,x) returns the Y on X linear regression equation in the variable x. For X, Y, and L, defined above,

           y := LinReg(X,Y,x);

     or

           y := LinReg(L,x);

.


    will produce

           y := 1.200000000 + .6000000000 x

· PolyReg(L, deg, x) or PolyReg(X, Y, deg, x): L, X, Y and x are as described in LinReg and deg is the degree of a polynomial. This procedure finds a least squares polynomial of degree deg for the points given in X and Y (or in L). For X, Y, and L defined above,

         y := PolyReg(X,Y,3,x);

     or

        y := PolyReg(L,3,x);

will produce


    88        23
  2
   3

       y   := 5 -  ‑‑‑ x + ‑‑‑‑ x ‑ 1/6 x

                      21        14

or

      y := 5.‑4.190476190*x+1.642867143*x^2‑.1666666667*x^3

· ScatPlot(L) or ScatPlot (X, Y): Produces a scatter plot of the n points

                    (xI,yl), (x2,y2) ,...., (Xn, Yn) 

If only one argument L is specified, then L must be a list of lists of the form

             L := [[xl,yl],[x2,y2], ... [xn,yn]];

If two arguments X and Y are used, then X and Y must be lists of the respective xcoordinates and y‑coordinates:

           X :=  [xl,x2,...,xn];

  
Y:=   [y1,y2,
…,yn];

· ScatPlotLine(L) or ScatPlotLine(X, Y): For a list of lists L or lists X and Y of the type described in ScatPlot above, this procedure produces the same scatter plot as ScatPlot. In this case the regression line of the points is superimposed on the scatter plot.

• PlotPolyReg(L, deg) or PlotPolyReg(X, Y, deg): For a list of lists L or lists X and Y of the type described in ScatPlot above, this procedure produces the same scatter plot as ScatPlot. In this case the polynomial regression line of the points is superimposed on the scatter plot. The degree of the polynomial is deg.

• Residuals(L) or Residuals (X, Y): For a list of lists L or lists X and Y of the type described in ScatPlot above, this procedure graphically displays the residuals and then gives the residual values in tabular form.

· RegBand (L, Conf Lev, Type) or RegBand (X, Y, ConfLev, Type): For a list of lists L or lists X and Y of the type described in ScatPlot above, this procedure will produce the same scatter plot and regression line as ScatPlotLine. In this case, depending on whether Type is C or P, a ConfLev% confidence band or prediction band will be included.

· RegAnal (L, [alphal, alpha2, alpha3]): For a list of lists, L, or two arguments, X and Y, this procedure will find point estimates for a, 0, and U2 and will then find confidence intervals for these three parameters that have confidence levels 1 ‑ alphal, 1 - alpha2, and 1 ‑ alpha3, respectively. Let

            L := [[70, 87], [67, 73], [74, 79], [70, 83], [80, 88], [64, 79], [84, 98], [74, 91], [80, 96], [82, 94]];

     RegAnal (L, [.05,.05,.05]);

will produce the following table:


Point
Confidence
Confidence

Parameter
Estimates
Level 
Interval

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑ ‑‑‑‑‑‑‑‑‑‑‑​

alpha
86.8000
.95
[83.3410,90.2590]

beta
1.0157
.95 
[.4784,1.5529]

sigma‑2
17.9998
.95
[10.2653,82.5781]

· AnovaBeta(L): Provides an ANOVA table for testing Ho: ( = 0. Using the data from the RegAnal example, we would have:

AnovaBeta(L);

-----------------------------------------------------------------------------------------------


Sum of


Squares
   Degr of
     Mean Sq

Source
(SS)
   Freedom
     (MS)
   F‑Ratio            p-value

----------------------------------------------------------------------------------------------

Regression
427.6019
1
   427.6019
19.0047 
.00241

Error
179.9981
8
22.4998

Total
   607.6000
   9

B.6 p.d.fs of Some Distributions

The p.d.f.s of a number of commonly used distributions are made available by the procedures of this section. The names of these procedures consist of the distribution name (as always with capitalized first letter) followed by PDF. The arguments consist of the distribution parameters (from the mnemonics used, you should be able to tell what each parameter stands for). The last argument is a variable name; the p.d.f. will be expressed in terms of this variable. Note: The parameters of the distribution can be in numeric or symbolic form.

· BernoulliPDF(p, x): If p is numerical as in BernoulliPDF(0.2, x);, the result will be

          
x   (1 - x)

                    .2       .8

If f := BernoulliPDF(p, x); is used,

                     x
(1 -  x)

             f := P (I ‑ P)

will be returned.

•
BetaPDF(alpha, beta, x)

•
BinomialPDF(n, p, x)

•
BivariateNormalPDF(muX, varX, X, muY, varY, y, rho): Since this is a bivariate distribution, two variable names x and y are specified.

•
CauchyPDF(x)

•
ChisquarePDF(r, x)

•
DoubleExponentialPDF (alpha, theta, x)

•
ExponentialPDF(theta, x)

• FPDF(nul, nu2, x)

•
GammaPDF(alpha, theta, x)

•
GeometricPDF(p, x)

•
HypergeometricPDMI, N2, n, x)

•
LogisticPDF(x)

•
NegBinomialPDF(r, p, x)

•
NormalPDF(mu, var, x)

•
PoissonPDF(lambda, x)

•
TPDF(nu, x)

• UniformPDF(a .. b, x)

•
WeibullPDF(alpha, beta, theta, x)

B.7 c.d.fs of Some Distributions

The c.d.f.s of a number of commonly used distributions are made available by the procedures of this section. The names of these procedures consist of the distribution name (as always with capitalized first letter) followed by CDF. The arguments consist of the distribution parameters (from the mnemonics used, you should be able to tell what each parameter stands for). The last argument is a variable name; the c.d.f. will be expressed in terms of this variable. Note: The parameters of the distribution can be in numeric or symbolic form.

· BernoulliCDF(p,x): Returns the c.d.f. of the Bernoulli distribution. If used with a numeric value of p, as in BeraoulliCDF(0.2, t) ; the following is returned.


(t + 1.)

              ‑ 1.066666667 .2500000000             + 1.066666667

The result of F :=   BernoulliCDF(p, t); will be

                          
2
                        (t + 1.)

                      ( -1. + P) 
( -1.          P )

                                                       ‑‑‑‑‑‑‑‑‑                                                    2

                                                        -1.  +  p                                     (-1. + p )

         F := --------------------------------------------------------  - 1.  --------------------

                                        2.   p  - 1                                                  2.  p  - 1

This is correct; however, it is far more complicated than it needs to be. We expect that future releases of Maple will produce a simpler answer.

• BetaCDF(alpha, beta, x)

• BinomialCDF(N, p, x)

• ChisquareCDF(r, x)

• Exponentia1CDF(theta, x)

• FCDF(nul, nu2, x)

• Gamma.CDF(alpha, theta, x)

• GeometricCDF(p. x)

• NegBinomia1CDF(r, p, x)

• NormalCDF(mu, var, x)

• PoissonCDF(lambda, x)

• TCDF(nu, x)

• UniformCDF(a .. b, x)

B.8 Percentiles of Some Distributions

The percentiles of a number of commonly used distributions are made available by the procedures of this section. The names of these procedures consist of the distribution name (as always with capitalized first letter) followed by P. The arguments consist of the distribution parameters (from the mnemonics used, you should be able to tell what each parameter stands for). The last argument is the percentile value (if it is numeric, it must be between 0 and 1). The parameters of the distribution, as well as the percentile, can be in numeric or symbolic form. If any of the arguments is in symbolic form, the result is left unevaluated. Note: Since the evaluation of percentiles involves the solution of integral equations that generally cannot be expressed in closed form, the percentile procedures do not always provide an answer.

B‑9 Percentiles of Some Distributions

· ChisquareP(r, p): This procedure returns the percentiles of a chi‑square distribution that has r degrees of freedom. ChisquareP (5, 0. 9) ; will produce 9.236356900. if ChisquareP(df, 0 .9); is used, then ChisquareP(df , 0.9) is returned. Similarly, if ChisquareP(5,P) ; is used, then ChisquareP(5,p) is returned.

· BetaP(alpha, beta, p)

· ExponentiaIP(theta, p)

· FP(nul, nu2, P)

· GammaP(alpha, theta, p)

· NormalP(mu, var, p)

· TP(nu, p)

· UniformP(a .. b, p)

B.10 Samples from Sampling Distributions

The procedures described in Section B.3, together with some computation, can be used to produce random samples from sampling distributions. For example, the following sequence can be used to obtain a list of 100 means of samples of size 5 from the uniform distribution on the interval [2,4].

                     samples := [seq(UniformS(2 .. 4, 5), i 1 .. 100)];

                    means := [seq(Mean(samples[i]), i = 1..100)];

The procedures of this section make this process more convenient, and in a number of cases, computationally more efficient.

· UniformMeanS(a . . b, n, m): This procedure generates m means of random samples of size n from U(a, b). The result of UniformMeanS (2 .. 4, 10, 4) ; will be something like

                          [2.813766232, 3.146085917, 3.212233169, 2.952763787]

·    UniformMedianS(a.. b, n, m): Generates m medians of samples of size n from uni​form distributions.

·    UniformSumS(a .. b, n, m): Generates m sums of samples of size n from uniform distributions.

· NormalMeanS(mu, var, n, m): Generates m means of samples of size n from normal distributions.

· NormalMedianS(mu, var, n, m): Generates m medians of samples of size n from normal distributions.

· NormalVarianceS(mu, var, n, m): Generates m variances of samples of size n from normal distributions.

· NormalSumS(mu, var, n, m): Generates m sums of samples of size n from normal distributions.

· NormTransVarS(mu, var, n, m): Generates m observations of (n ‑ I)S^2/(^2  for random samples of size n from normal distributions.

· ExponentialSumS (theta, n, m): Generates m sums of samples of size n from exponential distributions.

B.11 Confidence Intervals

· ConfIntMean(ListOf Samples, ConfLev) or

        Conf IntMean(ListOf Samples, ConfLev, variance): ListOfSamples is a list of lists, each entry of which is a sample. All the samples in ListofSamples must be of the same size. This procedure produces ConfLev% confidence intervals for the mean for each of the samples in ListOfSamples. The third argument, variance, is optional. If it is present, it will be assumed that the population variance is known and it is equal to variance. If only two arguments are used, it will be assumed that the population variance is unknown.

•
ConfIntVar(ListOfSamples, Conf Lev): Produces Conf Lev% confidence intervals for the variance for each of the samples in ListofSamples (the structure of ListOfSamples is as described above).

•
ConfIntProp (ListOfSamples, Conf Lev): Produces Conf Lev% confidence intervals for p, the probability of success in a Bernoulli trial (Listof Samples is as described above and in this case the samples must consist of 0's and l's).

•
ConfIntSuc(ListOfIntervals, v): The first argument, ListOfIntervals, is a list of lists of the form [ [al, b1] , [a2, b2] , . . . . [ak, bk] ] where each entry (e.g., [ai, bi]) is a confidence interval (probably produced by ConfIntMean or ConfIntVar or ConfIntProp). This procedure returns the number of "successes," i.e., the number of intervals that contain the parameter v.

•
ConfIntAvLen(ListOfIntervals): ListOfIntervals, the only argument, is as described above in ConfIntSuc. The procedure returns the average length of the intervals in ListOfIntervals.

•
ConfIntPlot (ListOfIntervals) or ConfIntPlot (ListofIntervals, v): The argument, ListOfIntervals, is as described in ConfIntSuc. This procedure produces a plot of the intervals in ListOfIntervals. The second argument is optional; if used, a vertical line at the parameter v will be superimposed on the plot of the confidence intervals.

B.12 Analysis of Variance

· Anova1 (L): This procedure performs a one‑factor analysis of variance. The argument L is a list of lists, where each sublist consists of the measurements associated with one of the classifications (factor levels). For example, to use Anova1 with measurements 13, 8, 9; 15, 11, 13; 11, 15, 10, representing three observations for each of three treatments, you would define L and then invoke Anova1 (the Maple commands and the output from Anova1 are given below).

                    L := [[13,8,9], [15,11,13],  [8,12,7],  [ll, 15, 10]] ;
                   Anova1(L);

                      Sum of

 Source          Squares              Degrees of         Mean Sq

               (ss)
Freedom
      (MS)
     F‑Ratio             p‑value

-------------------------------------------------------------------------------------------------------

Treat.
30.0000
3
10.0000
1.6000
0.2642

Error
50.0000
8
6.2500

Total
80.0000
11

· Anova2s(L): This procedure performs a two‑factor analysis of variance with a single observation per cell. The argument L is a list of lists, where each sublist consists of the measurements associated with the row factor. For example, to use Anova2s with row measurements 16, 18, 21, 21; 14, 15, 18, 17; 15, 15, 18, 16, we would define L and then invoke Anova2s (the Maple commands and the output from Anova2s are given below).

                 M := [[16,18,21,21], [14,15,18,17], [15,15,18,16]];

                 Anova2s(M);

                             Sum of

                             Squares       Degrees of         Mean Sq

Source                     (SS)
Freedom
      (MS)
  F‑Ratio             p‑value

------------------------------------------------------------------------------------------------------

Row(A)
24.0000
2
12.0000
18.0000
0.0029

Col (B)
30.0000
3
10.0000
15.0000
0.0034

Error
4.0000
6
0.6667

Total
68.0000
l1

-----------------------------------------------------------------------------------------------------

· Anova2m(L): This procedure performs a two‑factor analysis of variance with multiple observations per cell. The argument L is a list of lists of lists, of the form

                    L := [[Lll,Ll2,...,Llc], [L21,L22,...,L2c],...,[Lri,Lr2,...,Lrc]]:

where Lij is the list of measurements in row i and column j. The following illustrates a use of Anova2m.

N11 :=  [21,14,16,18]:   N12 :=  [16,20,15,21]:
N13 :=  [15,19,14,14]:

N14 :=  [17,17,18,20]:   N21 :=  [20,19,20,18]:
N22 :=  [15,16,17,19]:

N23 :=  [16,13,18,16]:   N24 :=  [18,17,21,19]:
N31 :=  [14,13,16,17]:

N32 :=  [17,18,16,16]:   N33 :=  [16,16,17,18]:
N34 :=  [16,16,17,18]:

N:=[[Nll,N12,N13,N14],[N21,N22,N23,N24],[N31,N32,N33,N34]]:

Anova2m(N);


Sum of




Squares
Degrees of
       Mean Sq

Source
(SS)
Freedom
(MS)
F‑Ratio 
p‑value

‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑------------------------------

Row(A)
15.7917
2
7.8958
2.1992
0.1256

Col (13)
23.0625
3
7.6875
2.1412
0.1121

Int(AB)
34.8750
6
6.8125
1.6190
0.1703

Error
129.2500
36
3.5903

Total
202.9792
47

--------------------------------------------------------------------------------------------

B.13 Goodness of Fit Tests

· QQFit (L, cdf , range) : This procedure provides a q‑q plot of the quantiles of the hypothesized distribution vs. the quantiles of the data. The data are in the list L. The distribution quantiles are calculated from cdf, the distribution function, that must be provided as an expression of one variable. If no range is given, the range is calculated from the data, Min(L) .. Max(L). The line y = x is superimposed on the q‑q plot.

· ChisquareFit(DataList, CDFexpr, Classes) or

      Chi squareFit; (DataList, CDFexpr, Classes, Discrete): This procedure performs

      a chi‑square goodness of fit test for the data in the list DataList and the distribution

      whose c.d.f. is given by CDFexpr. Classes is a list of the form [ai, a2, …, ak]

     describing classes

                            [a1, a2], [a2, a3], [a3, a4], …, [ak‑1, ak]​

If DataList contains numbers less than al or greater than or equal to ak then these are

absorbed into the first and last classes, respectively. The fourth argument is optional

and if present, it can be anything. Its presence simply indicates that CDFexpr is the

c.d.f. of a discrete distribution. ChisquareFit produces a histogram of the data on

the intervals designated by Classes with a superimposed probability histogram (in the

discrete case) or p.d.f. (in the continuous case). Additionally, ChisquareFit gives the

chi‑square goodness of fit statistic, the degrees of freedom associated with the test, and

the p‑value of the test. The following examples illustrates the use of ChisquareFit in

the discrete case. Note that if the possible outcomes are the integers al, a2, …, ak,

then the last argument in the list Classes should be ak + 1.

            F := x/10; 

            Dat := Die(10,100);

            C := [$(I .. 11)];

            ChisquareFit(Dat,F,C,Discrete);

             F := PoissonCDF(6, x); 

            Dat := PoissonS(6, 300); 

            C := [$(2 .. 13)]; 

            ChisquareFit(Dat, F, C, Discrete);

The following example illustrates ChisquareFit in the continuous case:

            F := ExponentialCDF(10, x); 

            Dat := ExponentialS(10, 200); 

            C := [(5*i) $ (i = 0 .. 8)]; 

            ChisquareFit(Dat, F, C);

In this last example, to construct class boundaries so the probabilities of the classes are equal, you may use the following:

            F := ExponentialCDF(10, x):

           Dat := ExponentialS(10, 200):

           CB := [0, seq(ExponentialP(10, k/10), k = 1 .. 9), Max(Dat)];

           ChisquareFit(Dat, F, CB);

· KSFit(DataList, CDFexpr, xmin .. xmax): A Kolmogorov‑Smirnov goodness of fit test is provided for the data in the list DataList and the distribution whose c.d.f. is given by CDFexpr. KSFit produces, on the interval designated by xmin .. xmax, an empirical c.d.f. of the data superimposed with the theoretical c.d.f. given by CDFexpr. Additionally, KSFit gives the Kolmogorov‑Smirnov goodness of fit statistic, and the location where this maximal value is attained. The following illustrates the use of KSFit.

               F := NormalCDF(100, 225, x); 

               Dat := NormalS(100, 225, 30); 

               KSFit(Dat, F, 60 .. 160);

B.14 Nonparametric Tests

· SignTest(Bexpr, x=X, y=Y, … ): This procedure counts the number of times the items of one or more lists fulfill certain conditions. Bexpr is a boolean expression in at least one (unassigned) variable. The remaining arguments are of the form name=list (one is needed for each variable in Bexpr). For example,

                  SignTest(x > 0.5, x = RNG(50));

will determine the number of the 50 random numbers that are greater than 0.5, and

               SignTest(x > y, x = RNG(50), y = RNG(50));

will determine the number of times xi > yi, i =1, 2,…, 50.

· Wilcoxon(L, m): Calculates the value of the Wilcoxon statistic for testing the median

       of a sample (m is subtracted from each element of the list L before ranking). Zero

       ranks (L [i] ‑m = 0) are deleted and ties are assigned averaged ranks. The following is

       a typical use of Wilcoxon(L,m): 


                     Wilcoxon(RNG(10), 0‑5);

· MedianTest(x, Y, k): Counts the number of observations of the list X in the lower k elements of the list that is obtained by combining and then sorting the lists X and Y. If nops(X) + nops (Y) is even, the third argument k may be omitted; in this case, (nops(X) + nops (Y) ) /2 will be used in the place of the third argument. Ties are not detected.

· Wilcoxon2(X, Y): This procedure performs the two‑sample test for equality of medians. It returns the sum of the ranks of the elements of the list Y (note difference from above). Ties are given averaged ranks.

· RunTest (X, Y) or RunTest (X, m) : RunTest (X, Y) counts the runs in the combined list of X and Y. RunTest(X, m) tests for randomness and counts the number of runs of observations that are above and below m.

B.15 Miscellaneous Items

· The statistics supplement has a list structure called Cards that consists of

                L := [Cl,C2,...,C13,DI,D2,...,DI3,HI,H2,...,H13,Sl,S2,...,S13];

        This makes it easy to simulate poker or bridge hands.

· MarginalRelFreq(L): If L is a two dimensional list (or equivalently a list of lists) then MarginalRelFreq produces [listl,list2] where list1 is a list of column relative frequencies in L and list2 is a list of row relative frequencies in L.

· Craps(): This procedure simulates a single craps game and returns a list. The first entry of the list is 0 or 1, depending on whether the player loses or wins the game; the remaining entries give the sequence of die rolls that produced the game. For example, a return of [1, 6, 4, 11, 3, 8, 6] indicates a win on successive rolls of 6, 4, 11, 3, 8, and 6.

· FastCraps (n): This is a compact version of Craps() ;. It returns the win/loss results of n simulated craps games (as 0's and 1's) without the sequences of dice rolls.

· Contingency (L): The argument L must be a list of lists, each entry of which is a list of observed frequencies from a contingency table. This procedure prints a table of the expected frequencies and then prints the chi‑square statistic and its p‑value.

· RandWalk(pn, ps, pe, steps, n): Starting at (0,0), an object moves (a fixed unit distance) North, South, East and West directions with respective probabilities pn, ps, pe, 1‑pn‑ps‑pe. RandWalk(pn, ps, pe, steps, n) gives the n coordinates of the locations of the object after steps moves as a list of lists.

· GraphRandWalk(pn, ps, pe, steps): Plots a single path of an object moving in the manner described above.

· RandWalk2 (pn, pe, steps, n): Starting at (0, 0), an object moves (a fixed unit distance) North‑South and East‑West with probabilities pn, 1‑pn, pe, 1‑pe, respectively. RandWalk2(pn, pe, steps, n) gives the n coordinates of the locations of the object after steps moves as a list of lists.

· GraphRandWalk2(pn, pe, steps): Plots a single path of an object moving in the manner described in RandWalk2.

· LetterChisquare (T1, T2, optional alphabet string, optional grouping list of lists) : This procedure uses a chisquare statistic to test the hypothesis that the proportions of letters used in two different types of text, T1 and T2, axe the same. It finds the frequencies of each letter in each text and prints these. It then prints a chisquare summary (contingency) table. This procedure has the standard alphabet built in. Because some letters are not observed very frequently, such letters may be grouped. This procedure calls on a procedure, PrintLetFreqTable, to print the frequencies of the letters. There is another procedure, LetterFreq, that also prints the frequencies of the letters.

                   T :=  "the quick brown fox jumps over the lazy dog":

                   B :=  "ask not for whom the bell tolls. it tolls for thee.


                  now is the time for all good people to come to the


                  aid of their country":

                  LetterFreq(T);

                  LetterFreq(B);

                  LetterChisquare(T,B);

                  LetterChisquare (T, B, [[10,11] , [16,17] [24,25,26]]);
· Convolution(X1, X2): The lists X1 and X2 are probability lists that represent discrete distributions (to represent the distribution of the roll of a die as a probability list, we define the list as X1 := [1,1/6,2,1/6,3,1/6,4,1/6,5,1/6,6,1/6] ;). This procedure returns a list that represents the convolution of the distributions represented by X1 and X2. For example, the distribution of the sum of two rolls of a die can be found as follows:

                  X1 :=  [1,1/6,2,1/6,3,1/6,4,1/6,5,1/6,6,1/6]; 

                  X2 :=  [1,1/6,2,1/6,3,1/6,4,1/6,6,1/6,6,1/6]; 

                   Y := Convolution(XI,X2);

· Convolut(f v[1] , di [1] , fv [2] , di [2] ): To find the p.d.f. for the sum of two random variables of the continuous type, this procedure applies the convolution formula (see Exercise 11.6.18(c), page 604 of Hogg/Tanis) to the two p.d.f.'s where these are written as lists: fv[i] gives the functional value(s) and di[i] gives the endpoints of the domain intervals(s) for the ith p.d.f., i = 1, 2. The output will give the p.d.f. for the sum as a list of lists: the domain "cutpoints" and the respective functional values. (Note that the number of elements in the first list is always one greater than the number in the second list.) The output should be converted to a piecewise function.

                 c[l]:=[0, 1];

                 f[1]:=[1]; # defines the U(0,1) p.d.f.

                 h[l] := [c[l], f [1]];

                 h[2]:=Convolut(f [1] c[l],f [1] c[1]); 

               # h[2] is the p.d.f. for the sum of 2 U(0,1) random variables.

                         c[l] :=  [0, 1]

                         f [1] := [1]

                         h[l] := [[0, 1], [1]]

                         h[2] := [[0, 1, 2], [x, 2 ‑ x]]

The following loop finds the p.d.f.'s for the sums of 3, 4, or 5 U(0, 1) random variables.

                n := 5:

               for k from 3 to n do

              c[k‑1] := [op(h[k‑l][l])];

              f[k-1] := [op(h[k‑l][2])];

             h[k] ‑= Convolut(f[k‑1], c[k‑1], f[l], c[l]);

             od:

            for k from 1 to n do

            c[k] := [op(h[k] [1])]:

            f[k] := [op(h[k] [2])]:

            g[k] := convert(If(x<op(c[k] [l]),0,seq(op([x<c[k] [j+l],

                       f[k] [j]]), j=l..nops(h[k][2]))),piecewise); # convert

                       to piecewise function

           od:

          g[3] := g[3];

                                 {               0                     x  <  0

                                 {                    

                                 {          ½ x^2                  x  <  1

                    g[3] :=  {

                                 {

                                 {   -3/2 – x^2  + 3 x        x  <  2

                                 {

                                 {  9/2  -  3 x  +  ½ x^2    x  <  3

See applications of Convolut in the section on the Central Limit Theorem.

